
UNIT 1---

Overview of Software Development Methodology

A Software Development Methodology is a

structured process used to plan, design, develop, test,

and maintain software. It provides a framework for

managing the entire software life cycle and ensures

that development is systematic, organized, and

predictable.

Purpose of Software Development Methodology

• To improve software quality

• To reduce development time

• To minimize project risks

• To increase customer satisfaction

• To make development manageable and

measurable

Common Software Development Methodologies

1. Waterfall Model

The Waterfall Model is one of the earliest and

simplest software development models. It is a

linear and sequential approach where each

phase must be completed before the next

phase begins. There is little to no overlap

between phases.

Key Concept:

• Works like a waterfall, flowing downward

through distinct phases.

• Focuses on documented requirements and

systematic execution.

• Linear and sequential

• Each phase completes before the next starts

• Easy to manage but rigid

• Suitable for small projects with fixed

requirements

2. Incremental Model

• Development happens in increments/parts

• Each increment adds new features

• Flexible and easy to test

3. Spiral Model

• Combines prototyping + risk management

• Project progresses in “spirals”

• Good for large, high-risk projects

4. Agile Methodology

• Iterative and incremental

• Focus on customer feedback

• Fast delivery of working software

• Includes Scrum, Kanban, XP

5. V-Model

• Verification and Validation model

• Testing is planned parallel to development

• Suitable for safety-critical systems

6. Prototype Model

• A quick working model (prototype) is built

• Helps understand user requirements

• Useful when requirements are unclear

Software Quality Model — Overview

A Software Quality Model defines the attributes,

characteristics, and standards that determine the

quality of a software product.

It helps measure whether the software meets

customer expectations and industry standards.

The most widely used software quality model is

McCall’s Quality Model and ISO/IEC 9126 Model.

1. McCall’s Quality Model

McCall’s model defines 3 major categories of software

quality:

A. Product Operation (How well the software

works?)

• Correctness → Does it meet requirements?

• Reliability → Does it work without failure?

• Efficiency → Uses resources properly?

• Integrity → Security and protection

• Usability → Easy to use?

B. Product Revision (How easily can it be changed?)

• Maintainability

• Flexibility

• Testability

C. Product Transition (How well does it adapt to new

environment?)

• Portability

• Reusability

• Interoperability

2. ISO/IEC 9126 Software Quality Model

ISO 9126 divides software quality into 6 main

categories:

1. Functionality

• Accuracy of functions

• Suitability

• Security

2. Reliability

• Maturity

• Fault tolerance

• Recoverability

3. Usability

• Learnability

• Understandability

• Operability

4. Efficiency

• Time behavior

• Resource utilization

5. Maintainability

• Analyzability

• Changeability

• Stability

• Testability

6. Portability

• Adaptability

• Installability

• Co-existence with other systems

These attributes help evaluate the overall quality of

software.

Conclusion (English)

Software development methodologies provide

systematic frameworks to create software efficiently

and predictably. Quality models like McCall’s and ISO

9126 help measure software’s performance, reliability,

maintainability, and user satisfaction. Together,

methodologies and quality models ensure that the

final product meets both functional and non-

functional requirements.

*Different Models of Software Development and

Their Issues

Software development models define the process

and structure used to build software. Each model has

its own advantages and limitations, and is used

depending on project size, risk, and requirements.

 Software development models provide structured

methods for planning, designing, developing, testing,

and maintaining software. Each model has

advantages but also specific issues/limitations that

affect its suitability for different projects.

Below are the major models and their issues:

1. Waterfall Model

Description

A linear sequential approach where each phase

(Requirement → Design → Coding → Testing →

Maintenance) must be completed before the next

begins.

Issues

• Very rigid, no changes allowed later

• Late testing, so problems are found very late

• Not suitable for complex or large projects

• Not ideal when requirements are unclear

• High risk and uncertainty

2. V-Model (Validation & Verification Model)

Description

An extension of the Waterfall model where each

development phase has a corresponding testing

phase.

Issues

• Same rigidity as Waterfall

• No flexibility for changing requirements

• Requires heavy planning

• Not suitable for projects requiring frequent

updates

3. Incremental Model

Description

Software is built and delivered in increments or

modules. Each increment adds new features.

Issues

• Requires careful planning

• Integration of increments may cause

problems

• Each increment demands testing → increases

effort

• Poor design in early increments affects later

ones

4. Iterative Model

Description

The system is developed in cycles (iterations). Each

iteration improves the previous version.

Issues

• Requires strong project management

• Architecture may remain unstable early on

• Repeated iterations increase time and cost

• Difficult to control continuous changes

5. Prototype Model

Description

A working prototype is built early to understand

unclear requirements. Feedback is used to refine the

system.

Issues

• Users may misunderstand prototype as final

system

• Frequent requirement changes cause design

instability

• Building multiple prototypes increases cost

• Poor prototype may lead to wrong

requirements

6. Spiral Model

Description

Combines prototyping with risk analysis.

Development proceeds in loops (spirals).

Issues

• Very expensive

• Needs highly skilled risk analysis experts

• Too complex for small projects

• Time-consuming because of repeated cycles

7. Agile Model

Description

An iterative and incremental model focusing on

customer collaboration, quick delivery, and

adaptability. Includes Scrum, Kanban, XP, etc.

Issues

• Requires highly skilled and experienced

teams

• Minimal documentation → future

maintenance becomes difficult

• Hard to estimate budget and time

• Frequent changes may cause scope creep

• Not suitable for very large teams without

coordination

8. RAD Model (Rapid Application Development)

Description

Focuses on fast development using reusable

components and strong user involvement.

Issues

• Needs skilled developers

• Requires high user involvement (not always

possible)

• Not suitable for complex systems

• Needs strong hardware and advanced tools →

expensive

9. Big Bang Model

Description

Very little planning; developers start coding without

clear requirements. Used for small or experimental

projects.

Issues

• Extremely high risk

• No structure or formal process

• Requirements may keep changing

• Final output may not satisfy customer

• Not suitable for large or important projects

Conclusion (English)

Different software development models provide

different approaches to building software, but each

comes with limitations. Rigid models like Waterfall

and V-Model struggle with changing requirements,

risk-focused models like Spiral are costly, and flexible

models like Agile depend heavily on team skill and

communication. Choosing the right model depends

on project size, complexity, and requirement

stability.

Conclusion (Hindi — Roman Hindi)

Har software development model ki apni strengths

aur weaknesses hoti hain. Waterfall jaise models

rigid hote hain, Spiral mehenga hota hai, Agile skilled

team maangta hai, aur Big Bang high risk deta hai.

Isliye project ki requirement, size, complexity aur risk

ke base par hi sahi model select karna chahiye.

**Evolution of Software Architecture

Software Architecture has evolved over time due to

changes in technology, user needs, system

complexity, and business environments.

Earlier systems were small and simple, but modern

systems are distributed, scalable, cloud-based, and

need to handle millions of users.

This evolution can be understood in five major

phases:

1. Monolithic Architecture (1960s – 1980s)

Characteristics

• Entire software built as one single unit

• All components (UI, logic, database) tightly

coupled

• No separation of concerns

Advantages

• Simple to develop and deploy

• Suitable for small applications

Issues

• Difficult to scale

• Hard to modify and maintain

• Small change requires redeploying entire

system

• Low flexibility

This was the earliest stage of software architecture.

2. Layered Architecture (1980s – 1990s)

(Also called N-Tier Architecture)

Characteristics

• System divided into layers such as:

o Presentation Layer

o Business Logic Layer

o Data Access Layer

o Database Layer

• Clear separation of concerns

Advantages

• Better maintainability

• Easier testing

• Changes in one layer do not affect others

Issues

• Still mostly centralized

• Limited scalability

• Performance bottlenecks in middle layers

This improved structure but still lacked flexibility for

large-scale systems.

3. Client–Server Architecture (1990s)

Characteristics

• Splits system into two main components:

o Client (UI / Front-end)

o Server (Business Logic + Database)

• Enabled distributed computing

Advantages

• Better performance

• Multiple clients connect to one server

• Supports remote access

Issues

• Server becomes bottleneck

• Limited scalability

• Maintenance becomes difficult when users

grow

This was a major shift from centralized systems to

distributed environments.

4. Service-Oriented Architecture – SOA (2000s)

Characteristics

• Uses services that communicate over a

network

• Each service performs a specific business

function

• Communication mostly via SOAP and XML

Advantages

• Reusable services

• Better integration between large enterprise

systems

• Technology-independent services

Issues

• Heavy protocols (SOAP, WSDL)

• High overhead

• Slower performance

• Complex service management

SOA introduced modularity but lacked speed and

simplicity.

5. Microservices Architecture (2010s – Present)

Characteristics

• System split into small, independent services

• Each microservice has its own database and

deployment

• Communication via REST APIs, gRPC, Message

Queues

• Highly distributed and scalable

Advantages

• High scalability

• Faster development and deployment

• Technology freedom (each service can use

different tech)

• Fault isolation — one service failure does not

break entire system

Issues

• Complex to manage

• Requires DevOps, containerization (Docker),

and orchestration (Kubernetes)

• Distributed debugging is difficult

This is the most widely used architecture today.

6. Cloud-Native & Serverless Architecture (Future &

Current Trend)

Characteristics

• Applications run on cloud infrastructure

• Use Functions-as-a-Service (FaaS) like AWS

Lambda, Azure Functions

• Fully managed services

Advantages

• Auto-scaling

• No server management

• Only pay for the resources used

Issues

• Vendor lock-in

• Cold start problems

• Complex distributed design

Conclusion (English)

Software architecture evolved from simple

monolithic systems to highly scalable microservices

and serverless architectures. Each stage addressed

limitations of earlier models, improving modularity,

performance, scalability, and maintainability. Today’s

architectures focus on cloud-native, distributed, and

scalable solutions to support modern applications.

Conclusion (Hindi — Roman Hindi)

Software architecture ka safar monolithic

applications se shuru hua aur aaj microservices aur

serverless jaise advanced models tak pahunch gaya

hai. Har stage ne pichhle model ki problems ko solve

kiya hai, jaise scalability, flexibility, aur

maintainability. Aaj ka focus cloud-native aur

distributed systems par hai jo bade level par users ko

smoothly handle kar sakte hain.

**Software Components and Connectors

Software Architecture is built using two primary

building blocks:

1. Software Components

2. Software Connectors

These two define what parts a system has and how

those parts communicate.

1. Software Components

Definition

A software component is an independent, reusable,

self-contained unit of software that performs a

specific function.

It encapsulates data and behavior.

Key Points

• Components are the main functional units of

a system

• They hide internal details (encapsulation)

• They interact with other components through

well-defined interfaces

• They can be replaced or updated

independently

Examples of Components

• UI component

• Login component

• Payment component

• Database access component

• Search component

• Authentication module

Characteristics

• Reusability → can be reused in other

applications

• Replaceability → one component can be

updated without affecting others

• Independence → performs a specific task

• Encapsulation → internal logic hidden from

outside

Types of Components

1. Presentation Components

o User interface, screens, forms

2. Business Logic Components

o Rules, processing logic

3. Data Access Components

o Database queries, CRUD operations

4. Utility Components

o Logging, configuration, encryption

2. Software Connectors

Definition

A software connector is the mechanism that enables

communication and interaction between

components.

It defines how components will exchange data,

control signals, and messages.

Key Points

• Connectors describe interactions, not

behavior

• They represent relationships between

components

• They can be protocols, data flows or

communication links

Examples of Connectors

• Function call

• API call (REST, gRPC)

• Message queue (Kafka, RabbitMQ)

• Database connection

• Shared memory

• Events and event handlers

• Network protocols (HTTP, TCP)

Characteristics

• Communication → enables data flow

• Coordination → manages how components

interact

• Conversion → may convert data formats

• Routing → sends messages to correct

component

Types of Connectors

1. Procedure Call Connectors

o Function calls, methods, RPC

2. Data Access Connectors

o SQL queries, ORM, database

connections

3. Event Connectors

o Publish–subscribe, event listeners

4. Message Connectors

o Message queues, message brokers

5. Network Connectors

o HTTP, TCP/IP, REST APIs

6. File Connectors

o File reading/writing

Difference Between Components and Connectors

Components Connectors

Represent functional

units

Represent communication

links

Provide behavior Provide interaction

Have interfaces and

methods
Have protocols or channels

Examples: login

module, UI

Examples: API call, event,

message bus

Simple Example

Suppose you have an E-commerce Application:

Components

• Product Catalog Component

• Cart Component

• Payment Component

• User Authentication Component

Connectors

• REST API calls between components

• Database connection for data storage

• Message queue for order notifications

• Event system for “Payment Successful”

Conclusion (English)

Software components are the functional building

blocks of a system, while connectors specify how

these components communicate and interact.

Together, they form the foundation of software

architecture by defining system structure, behavior,

and communication patterns.

Conclusion (Hindi — Roman Hindi)

Software components system ke kaam karne wale

parts hote hain, jabki connectors un components ke

beech communication ka tarika batate hain. Dono

milkar software architecture ka base banate hain aur

system ko organized, scalable aur maintainable

banate hain.

** Common Software Architecture Frameworks

A Software Architecture Framework provides a

structured method to describe, design, document,

and analyze software architecture.

It defines principles, standards, viewpoints, and best

practices for creating high-quality software systems.

These frameworks ensure that the architecture is

organized, maintainable, scalable, and aligned with

business goals.

1. Zachman Framework

Description

• One of the earliest and most widely used

architecture frameworks

• Based on a 2D matrix with 6 rows

(perspectives) and 6 columns (aspects)

Perspectives (Rows)

1. Planner

2. Owner

3. Designer

4. Builder

5. Subcontractor

6. User

Aspects (Columns)

• What (Data)

• How (Process)

• Where (Network)

• Who (People)

• When (Time)

• Why (Motivation)

Key Features

• Ensures complete documentation

• Very structured and detailed

Issues

• Too complex for small projects

• Hard to implement fully

2. TOGAF (The Open Group Architecture Framework)

Description

The most popular enterprise architecture framework

used globally.

Based on the ADM → Architecture Development

Method.

Key Phases in ADM

• Preliminary

• Business Architecture

• Information System Architecture

• Technology Architecture

• Opportunities & Solutions

• Migration Planning

• Implementation Governance

• Architecture Change Management

Key Features

• Provides guidelines, templates, standards

• Helps organizations align IT with business

• Supports continuous improvement

Issues

• Requires trained architects

• Heavy documentation

3. 4+1 View Model (by Philippe Kruchten)

A practical architecture framework widely used in

software development.

It uses 5 views to describe architecture:

1. Logical View – functionality (classes, objects)

2. Process View – performance, concurrency,

threads

3. Development View – module/packaging

structure

4. Physical View – deployment on hardware

5. Scenarios (Use Cases) – connect all views

together

Key Features

• Very easy to understand

• Covers all important architecture aspects

• Widely used in UML and industry

Issues

• High-level only; no detailed guidance

4. RM-ODP (Reference Model for Open Distributed

Processing)

Description

A framework specifically for distributed and

network-based systems.

It defines 5 viewpoints:

1. Enterprise View

2. Information View

3. Computational View

4. Engineering View

5. Technology View

Key Features

• Best for large distributed systems

• Clear separation of concerns

Issues

• Too abstract

• Hard to implement in small systems

5. Federal Enterprise Architecture Framework (FEAF)

Description

Used mainly by U.S. Government agencies.

Helps integrate large public-sector IT systems.

Key Features

• Provides reference models:

o Business

o Service

o Data

o Technical

o Performance

• Ensures interoperability between large

organizations

Issues

• Not commonly used in private companies

• Documentation-heavy

6. DoDAF (Department of Defense Architecture

Framework)

Description

Used for military, defense, and high-security systems.

Key Features

• Very strict and reliable

• Provides detailed operational and technical

views

• Useful for mission-critical systems

Issues

• Too complex for normal software projects

• High learning curve

Conclusion (English)

Software architecture frameworks provide structured

models to design, document, and analyze complex

software systems. Frameworks like TOGAF, Zachman,

4+1 View Model, RM-ODP, FEAF, and DoDAF help

architects organize architecture into views, improve

communication, and align IT with business

objectives.

Conclusion (Hindi — Roman Hindi)

Software architecture frameworks ek systematic

tarika dete hain jisse large software systems ko

design aur manage kiya ja sake. TOGAF, Zachman,

4+1 Model aur RM-ODP jaise frameworks

architecture ko clear views me divide karke

development ko aasaan, organized aur business

goals ke according banate hain.

** Architecture Business Cycle (ABC)

The Architecture Business Cycle (ABC) is a model that

explains how a software architecture is created,

influenced, and evolved over time. It shows the

relationship between stakeholders, business goals,

technical environment, and the architecture itself.

ABC basically tells us:

Architecture is not created in isolation — it is shaped

by people, business goals, organization, previous

systems, and technology trends.

Key Elements of Architecture Business Cycle

1. Stakeholders

These are the people who have interest in the

system.

Examples:

• Customers

• End users

• Developers

• Project managers

• Investors

• Testers

They influence architecture by giving requirements

like:

• Performance

• Security

• Scalability

• Budget constraints

2. Business Goals

Architecture must support business needs such as:

• Time-to-market

• Low cost

• High reliability

• Competitive advantage

• Future scalability

Business goals strongly shape early architecture

decisions.

3. Technical Environment

Architecture is influenced by:

• Existing systems (legacy)

• Available hardware

• Programming languages

• Platforms (cloud/mobile/web)

• Industry standards

Example: If an organization always uses Java + Spring

Boot, the architecture tends to use the same stack.

4. The Architect

The architect’s experience, skills, past projects, and

design philosophy influence the architecture.

For example:

An architect strongly experienced in microservices

will lean towards a microservice-based architecture.

5. The Developed Architecture

After considering all influences, the architecture is

created.

It includes:

• Structure of components

• Connectors

• Design patterns

• Quality attributes (performance, security,

etc.)

6. How Architecture Influences the Organization Back

After the architecture is built, it affects:

• Team structure

• Development process

• Future projects

• Reuse of components

• Costs and timelines

Example:

A microservices architecture requires:

• DevOps team

• Containerization

• CI/CD pipelines

So it changes the organization’s working style.

7. Feedback Loop

ABC is a cycle, meaning:

• Architecture is influenced by stakeholders

and environment

• Architecture influences the system and

organization

• New systems influence future architectures

This becomes a continuous loop of influence.

Example of Architecture Business Cycle

Suppose a company wants to build an online food

delivery system like Zomato.

Influences on Architecture:

• Stakeholders: customers want fast delivery

updates

• Business goal: scale to 10 million users

• Technical environment: company already uses

cloud + microservices

• Architect: experienced in distributed systems

Final outcome:

• They choose microservices architecture with

event-driven messaging.

• Later, this architecture forces the company to

hire DevOps experts, adopt Kubernetes, etc.

• This changes organizational processes —

completing the cycle.

Conclusion (English)

The Architecture Business Cycle explains that

software architecture is shaped by stakeholders,

business goals, technology environment, and the

architect’s experience. In return, the architecture

influences the development process and the

organization. It is a continuous cycle of influence that

ensures the system meets both technical and

business needs.

निष्कर्ष (Hindi)

Architecture Business Cycle यह बताता है कक
सॉफ़्टवेयर आककष टेक्चर अकेले िह ीं बिता, बल्कक
stakeholders, business goals, technology और
architect के अिुभव से प्रभाववत होता है। बदले में,
तैयार ककया गया architecture सींगठि और ववकास
प्रकिया को प्रभाववत करता है। इस तरह यह एक
लगातार चलिे वाला चि है जो तकिीकी और
व्यावसानयक जरूरतों को सींतुललत करता है।

*** 1. Definition of Architectural Pattern

An Architectural Pattern is a reusable, high-level

design structure that provides a standard way to

organize software components, define their

interactions, and support system quality attributes

like performance, scalability, and maintainability.

These are templates, not code, used by software

architects to design large systems.

2. Important Architectural Patterns (With Uses +

Advantages + Issues)

 1. Layered Architecture (N-Tier Architecture)

Definition:

System is divided into layers like Presentation,

Business Logic, and Data Access. Each layer performs

a separate role.

Uses:

• Web applications

• Enterprise apps

• Banking and ERP systems

Advantages:

• Easy to maintain and update

• High separation of concerns

• Each layer can be tested independently

Issues / Disadvantages:

• Slow performance due to multiple layers

• Not suitable for real-time systems

• Upper layers depend on lower layers

 2. Client–Server Architecture

Definition:

Clients send requests; server processes and

responds. Server contains main data + logic.

Uses:

• Websites

• Email systems

• Database applications

Advantages:

• Centralized control and security

• Easy to update server

• Clients can be lightweight

Issues / Disadvantages:

• Server overload

• Single point of failure

• High network dependency

 3. Microservices Architecture

Definition:

Application is divided into small, independent

services. Each service can run and deploy separately.

Uses:

• Large-scale apps (Amazon, Netflix, Uber)

• Cloud-native applications

Advantages:

• Highly scalable

• Independent deployment

• Fault isolation

• Different services can use different

technologies

Issues / Disadvantages:

• Very complex to develop and manage

• Requires DevOps, containers, CI/CD

• Difficult debugging

• Communication overhead

 4. Event-Driven Architecture

Definition:

Components communicate via events. When an

event occurs, other components react to it.

Uses:

• Real-time apps

• IoT systems

• Stock trading, live notifications

Advantages:

• High performance

• Loose coupling

• Scalable and responsive

Issues / Disadvantages:

• Event tracking is difficult

• Debugging is complex

• Requires message brokers

 5. Pipe and Filter Architecture

Definition:

Data flows through a pipeline where each filter

processes data and sends it forward.

Uses:

• Compilers

• Data transformation pipelines

• Batch processing systems

Advantages:

• Easy to modify or add filters

• Highly reusable filters

Issues / Disadvantages:

• Not ideal for interactive systems

• Data transfer overhead

• No backward communication

 6. MVC (Model–View–Controller)

Definition:

System divided into Model (data), View (UI),

Controller (input handling).

Uses:

• Web frameworks (Django, Laravel, Rails)

• GUI applications

Advantages:

• Separation of UI and logic

• Easier maintenance

• Multiple views can share one model

Issues / Disadvantages:

• Too many files and complexity

• Controller may become overloaded

 7. Publish–Subscribe Architecture (Observer

Pattern)

Definition:

Publishers send messages; subscribers receive only

the messages they are subscribed to.

Uses:

• Notification systems

• Social media feeds

• Messaging apps (MQTT, Kafka)

Advantages:

• Real-time updates

• Scalable

• Loose coupling

Issues / Disadvantages:

• Hard to track delivery sequence

• Debugging is difficult

• Message overhead

 8. Broker Architecture

Definition:

A broker manages communication between clients

and servers in a distributed environment.

Uses:

• Distributed systems

• Middleware

• Message queuing systems (Kafka, RabbitMQ)

Advantages:

• Reduces complexity of communication

• Good scalability

• Supports heterogeneous systems

Issues / Disadvantages:

• Broker becomes performance bottleneck

• Broker failure affects system

• Slightly higher latency

 Conclusion (English)

Architectural patterns provide proven structural

templates for designing software systems. Each

pattern has specific uses, advantages, and issues.

Choosing the right pattern depends on system

requirements such as performance, scalability,

maintainability, and complexity.

 निष्कर्ष (Hindi)

Architectural patterns सॉफ़्टवेयर लसस्टम को
व्यवल्स्ित और प्रभावी ढींग से डिजाइि करिे के ललए
तैयार ढााँचे प्रदाि करते हैं। हर पटैिष के अपिे उपयोग,

फायदे और चिुौनतयााँ होती हैं। सह पैटिष का चयि
लसस्टम की जरूरतों पर निभषर करता है।

*** Reference Model – Complete Explanation

1. Definition of Reference Model

A Reference Model is a high-level, abstract

framework that describes the important elements of

a system and their relationships.

It does not specify implementation, but provides a

conceptual blueprint for understanding and

designing architectures.

In simple words:

A reference model explains what components exist

in a system and how they logically relate — not how

to implement them.

2. Purpose of a Reference Model

• To provide a common vocabulary for

designers and developers

• To act as a guideline for creating system

architectures

• To show basic functions required in a system

• To help compare different architecture

designs

3. Features of Reference Model

• Abstract (high-level idea, not actual system)

• Technology independent

• Reusable across multiple architectures

• Shows relationships, not implementations

• Helps in communication between

stakeholders

4. Uses of Reference Model

• Used as a foundation to create reference

architectures

• Helps in standardization of system design

• Helps in teaching and documentation

• Used for evaluating and comparing

architectural alternatives

• Provides baseline structure for designing

systems

5. Example of a Reference Model

Example 1: OSI Reference Model (Networking)

OSI model is a 7-layer reference model that explains

how communication happens between devices.

Layers:

1. Physical

2. Data Link

3. Network

4. Transport

5. Session

6. Presentation

7. Application

Note: OSI Model is a reference model, not an actual

implementation.

Example 2: E-commerce Reference Model

A reference model for online shopping typically

includes:

• User Interface

• Product Catalog

• Shopping Cart

• Payment Processing

• Order Management

ये लसफष conceptual structure बताता है — actual

code िह ीं।

6. Difference Between Reference Model and

Reference Architecture

Reference Model Reference Architecture

High-level abstract

concept
More detailed structure

Describes what the

system needs

Describes how it can be

built

Technology-independent
May include technology

suggestions

No components or

connectors

Has components +

interactions

 Advantages of Reference Model

1. Provides a Common Standard

सबको एक जैसा ढाींचा समझिे में मदद करता है,

ल्जससे communication आसाि होती है।

2. Technology-Independent Design

कोई specific language, tool या platform की
dependency िह ीं होती। हर system में use ककया जा
सकता है।

3. Reusable Structure

इसी model को बार-बार multiple architectures में
apply ककया जा सकता है।

4. Clear Understanding of System Components

बताता है कक system में कौि-कौि से essential

elements होिे चाहहए और उिका relation क्या है।

5. Helps in Comparing Architectures

ववलभन्ि architectures को reference model से match

करके आसािी से compare ककया जा सकता है।

6. Improves Documentation and Teaching

Students और developers दोिों के ललए complex

systems समझिा आसाि हो जाता है।

7. Foundation for Reference Architectures

इसे आधार मािकर आगे detailed architecture तैयार
ककया जाता है।

 Disadvantages / Issues of Reference Model

1. Too Abstract (Very High-Level)

Actual implementation details िह ीं देता, ल्जससे
beginners confuse हो सकते हैं।

2. Not Suitable for Direct Implementation

Reference model केवल concept बताता है; उसे
directly use करके software िह ीं बिाया जा सकता।

3. Interpretation May Differ

Different architects इसे अलग-अलग तरह से समझ
सकते हैं, ल्जससे inconsistency आ सकती है।

4. Not Updated Quickly

Technology बहुत fast बदलती है, लेककि reference

models बहुत rarely update होते हैं।

5. Limited Practical Guidance

Real-world issues जैसे performance, security,

scalability—model में details िह ीं होतीीं।

6. No Actual Components or Connectors

Model में लसफष logical idea होता है; actual

architecture बिािे के ललए extra effort चाहहए।

Conclusion (English)

Reference models are powerful conceptual tools that

guide understanding and design of software systems.

However, they are abstract and cannot be directly

implemented, requiring additional architecture

work.

निष्कर्ष (Hindi)

Reference models लसस्टम को समझिे और डिजाइि
करिे में मदद करते हैं, लेककि ये बहुत high-level होते
हैं और इन्हें सीधे implement िह ीं ककया जा सकता।
इसललए इन्हें लसफष आधार के रूप में इस्तेमाल ककया
जाता है।

UNIT 2-------

 Software Architecture Models (Full University

Exam Answer)

Software architecture models describe different

views of a software system to understand its

structure, behavior, and interactions. These models

help architects, developers, and stakeholders

visualize the system before development.

 Structural Model

Definition (Exam-Ready)

A structural model represents the static structure of

a system by showing components, modules, sub-

systems, interfaces, and the relationships between

them.

Explanation

• It shows what components exist in the

architecture.

• It focuses on class diagrams, component

diagrams, module diagrams.

• No runtime behavior – only static view.

Uses

• To understand system organization

• For module decomposition

• For code planning and documentation

• Helps identify dependencies and data

structures

Advantages

• Provides clear system overview

• Easy to maintain and update

• Helps identify reusable components

• Excellent for early design reviews

Disadvantages

• Does not show runtime behavior

• May become outdated if code changes

• Complex systems can become difficult to

diagram

Common Issues

• Over-simplification

• Misleading due to missing dynamic behavior

Example

• UML class diagrams

• Component diagrams showing UI layer,

business layer, database layer

 Framework Model

Definition (Exam-Ready)

A framework model defines a predefined

architectural skeleton containing reusable

components, libraries, patterns, and guidelines on

which application-specific code is built.

Explanation

• Gives a ready platform to build the system.

• Defines how components should interact.

• Examples: .NET Framework, Spring

Framework, Django

Uses

• Faster development

• Standardized code structure

• Enforces best practices

• Reduces development effort

Advantages

• High reusability

• Reduces time and cost

• Provides security, performance optimization,

and libraries

• Encourages consistent architecture

Disadvantages

• Learning curve is high

• Framework limitations restrict flexibility

• Upgrading framework may break

compatibility

Issues

• Vendor lock-in

• Heavy frameworks may slow performance

Example

• Spring MVC architecture

• Android application architecture

 Dynamic Model

Definition (Exam-Ready)

A dynamic model represents the runtime behavior of

a system, showing how components interact,

respond to events, change states, and exchange

messages during execution.

Explanation

• Shows how the system behaves rather than

how it is structured.

• Includes sequence diagrams, activity

diagrams, state diagrams.

• Focuses on control flow and data flow during

execution.

Uses

• Understanding object interactions

• Communication patterns between modules

• Designing workflows

• Describing state transitions

Advantages

• Shows realistic system behavior

• Helps detect logical and runtime errors

• Useful for simulation and testing

• Improves understanding of complex

interactions

Disadvantages

• More difficult to model

• Requires detailed knowledge of system logic

• Can become complex for large systems

Issues

• Frequent changes during development

• Hard to maintain consistency with

implementation

Example

• Sequence diagram of login process

• State diagram of ATM machine

 Process Model

Definition (Exam-Ready)

A process model describes the concurrent processes,

threads, synchronization mechanisms, and

communication between parallel activities in a

software system.

Explanation

• Shows how multiple components run

simultaneously.

• Handles deadlocks, race conditions,

concurrency control.

• Focuses on multi-threaded and parallel

system design.

Uses

• Designing distributed systems

• Scheduling, threading, concurrency

• Real-time systems like OS, embedded systems

• Network communication design

Advantages

• Helps plan concurrency

• Improves performance understanding

• Avoids synchronization issues

• Essential for multi-user systems

Disadvantages

• Hard to design and test

• Complex for beginners

• Difficult to debug race conditions

Issues

• Deadlocks

• Resource contention

• Thread synchronization errors

Example

• Client-server communication

• Operating system process architecture

• Multi-threaded banking system

 Conclusion (Full Marks)

Software Architecture Models provide different

perspectives of a system.

• Structural models show static organization.

• Framework models give reusable

architectural templates.

• Dynamic models show runtime interactions.

• Process models manage concurrency and

parallelism.

Together, they help architects design reliable,

efficient, and maintainable software systems.

** Software Architecture Styles (Full Combined

Answer — Exam Ready)

Software Architecture Styles define standard ways of

organizing a software system, deciding how

components communicate, how data flows, and how

control moves in the system. Each architecture style

has its own working principle, benefits, and

limitations.

िीचे सभी important architecture styles एक ह जगह
detailed में बताए गए हैं।

 Data-Flow Architecture

Definition

A data-flow architecture organizes the system

around continuous data movement, where data

flows through multiple processing steps.

Key Points

• Focuses on data transformation

• Components perform fixed operations

• Data moves in sequences

Working Principle

• Input → Processing Step 1 → Step 2 → … →

Output

• Each step receives data, processes it, and

forwards it.

Uses

• Signal processing

• Compilers

• Data pipelines

Advantages

• High reusability

• Easy to understand

• Good for sequential processes

Disadvantages

• Not suitable for complex logic

• Difficult to manage control decisions

Example

• Compiler phases

 Pipes and Filters Architecture

Definition

It consists of filters (processing units) connected by

pipes (data channels).

Key Points

• Each filter performs one function

• Pipes carry data between filters

• Output of one = input of next

Working Principle

Data enters the first filter, gets transformed, and

passes through multiple filters until final output.

Uses

• Streaming systems

• Audio/video processing

• Unix pipelines

Advantages

• High modularity

• Replace filters easily

• Supports parallel processing

Disadvantages

• Requires uniform data format

• Can be slow for large data

Example

cat file | grep word | sort

 Call and Return Architecture

Definition

A hierarchical architecture where one module calls

another and receives control back after completion.

Key Points

• Based on top-down design

• Control flows through function calls

Working Principle

Main program → calls subprogram → returns back →

continues execution.

Uses

• Procedural systems

• Simple applications

Advantages

• Simple design

• Clear control flow

Disadvantages

• Deep nesting increases complexity

• Poor scalability

Example

C/C++ programs with multiple function calls.

 Data-Centered Architecture (Repository Model)

Definition

System organized around a central shared data

repository accessed by multiple components.

Key Points

• Central database

• All clients interact with it

• Tight integration with data

Working Principle

Clients send requests → Repository processes →

Sends back results.

Uses

• Banking

• ERP

• Cloud storage

Advantages

• High data integrity

• Easy data management

Disadvantages

• Single point of failure

• Performance bottleneck

Example

DBMS, Blackboard system

 Layered Architecture

Definition

System divided into hierarchical layers, each

performing a specific role.

Key Points

• Each layer depends on only the layer below

• Separation of concerns

Working Principle

User request → Presentation layer → Business layer

→ Data layer → Response back to user.

Uses

• Web applications

• Operating systems

Advantages

• Easy maintenance

• High modularity

Disadvantages

• Slow due to multiple layers

• Hard to skip layers

Example

3-tier architecture: UI → Logic → Database

 Agent-Based Architecture

Definition

Consists of autonomous, intelligent agents that

sense, reason, and act independently.

Key Points

• Agents are independent

• They can communicate

• They make decisions

Working Principle

Agent senses environment → Processes internally →

Performs action → Communicates with others if

needed.

Uses

• Robotics

• AI systems

• Monitoring systems

Advantages

• Highly flexible

• Adaptive behavior

Disadvantages

• Designing intelligent agents is difficult

• Communication overhead

Example

Multi-agent surveillance drones

 Microservices Architecture

Definition

Application is divided into independent, small

services, each responsible for a single business

function.

Key Points

• Each service has its own database

• Communication through APIs

• Independent deployment

Working Principle

Client → API Gateway → Specific Microservice →

Database → Response.

Uses

• E-commerce

• Cloud applications

• Large enterprises

Advantages

• High scalability

• Independent updates

• Technology flexibility

Disadvantages

• Complex communication

• Requires DevOps

Example

Netflix, Amazon microservices

 Reactive Architecture

Definition

Builds systems that are responsive, resilient, elastic,

and message-driven, as per the Reactive Manifesto.

Key Points

• Asynchronous behavior

• Event-driven communication

• High performance

Working Principle

Events/messages trigger actions → System responds

immediately → Maintains resilience and elasticity.

Uses

• Real-time systems

• IoT

• Stock market apps

Advantages

• High responsiveness

• Fault-tolerance

• Scales easily

Disadvantages

• Complex design

• Difficult debugging

Example

Akka reactive systems

 REST (Representational State Transfer)

Definition

REST is a distributed architecture using stateless

client-server communication over HTTP.

Key Points

• Stateless

• Uses HTTP methods (GET, POST, PUT, DELETE)

• Resource-based communication

Working Principle

Client sends request → Server returns resource

representation → No session stored.

Uses

• Web APIs

• Mobile app backends

• Cloud services

Advantages

• Lightweight

• Fast

• Platform-independent

Disadvantages

• Not good for complex transactions

• Limited built-in security

Example

Google Maps API, Twitter API

 FINAL CONCLUSION (Exam Ready)

Software architecture styles provide standard

solutions for organizing a system.

• Dataflow and Pipes & Filters handle data

movement.

• Call and Return suits procedural systems.

• Data-centered centralizes data.

• Layered improves modularity.

• Agent-based enables intelligent distributed

behavior.

• Microservices increase scalability.

• Reactive architecture supports high

responsiveness.

• REST enables lightweight distributed

communication.

Correct selection of architecture style ensures

performance, scalability, maintainability, and

reliability of the final system.

UNIT 3--- Software Architecture Implementation

Technologies (Full Exam Answer)

Software architecture is implemented using various

technologies, tools, frameworks, and platforms that

help in building large-scale, maintainable, and high-

performance software systems. These technologies

support different architectural styles such as layered

architecture, MVC, microservices, and client-server

architecture.

िीचे important technologies ववस्तार से और exam-

friendly तर के से हदए गए हैं।

 Software Architecture Description Languages

(ADLs)

Definition

ADLs are formal languages used to describe, specify,

analyze, and model the architecture of software

systems.

Key Points

• Used for high-level architectural modeling

• Describe components, connectors,

configurations

• Provide textual or graphical notation

Working Principle

• Architect defines components + connectors

using ADL

• ADL validates structure and constraints

• Supports simulation, analysis, and verification

Features

• Formal specification

• Reusability

• Early design validation

Advantages

• Reduces design errors

• Helps detect mismatches early

• Supports documentation and communication

Disadvantages

• Requires expertise

• Not suitable for low-level design

Examples

• AADL (Architecture Analysis & Design

Language)

• ACME

• Wright

• UML (semi-formal ADL)

Uses

• Safety-critical systems

• Large enterprise applications

• Embedded software

 Struts Framework

Definition

Apache Struts is an MVC-based Java framework used

to build web applications.

Key Points

• Based on Model-View-Controller architecture

• Provides form beans, action classes, JSP

integration

Working Principle

1. User sends request

2. Controller (ActionServlet) handles request

3. Business logic executed via Action class

4. Response returned through JSP View

Features

• Easy configuration

• Centralized controller

• XML-based architecture

Advantages

• Good separation of concerns

• Reusable components

• Supports internationalization

Disadvantages

• Complex XML configuration

• Not suitable for modern SPA apps

Uses

• Banking web apps

• Educational portals

• Enterprise admin dashboards

 Hibernate

Definition

Hibernate is an ORM (Object Relational Mapping)

framework that maps Java objects to database

tables.

Key Points

• Eliminates JDBC complexity

• Automatically manages SQL queries

Working Principle

• Java class ↔ Database table mapping

• CRUD operations auto-generated using

HQL/Criteria API

Features

• Lazy loading

• Caching

• Transaction management

Advantages

• Faster development

• Reduces SQL code

• Database-independent

Disadvantages

• Learning curve

• Complex debugging

Uses

• Inventory management

• Billing systems

• eCommerce applications

 Node.js

Definition

Node.js is a server-side JavaScript runtime

environment built on Google’s V8 engine.

Key Points

• Event-driven

• Non-blocking I/O

• Ideal for scalable applications

Working Principle

• Single-threaded event loop handles multiple

requests

• Asynchronous callbacks improve performance

Features

• Fast execution

• Rich package ecosystem (NPM)

• Cross-platform

Advantages

• High performance

• Real-time capabilities

• Easy to scale horizontally

Disadvantages

• Not suitable for CPU-heavy tasks

• Complex callback handling

Uses

• Real-time chat applications

• Streaming apps

• Online games

• REST APIs

 AngularJS

Definition

AngularJS is a JavaScript-based front-end framework

developed by Google for building dynamic single-

page applications (SPAs).

Key Points

• Follows MVC/MVVM

• Uses two-way data binding

Working Principle

• Model ↔ View automatically synchronized

• Directives extend HTML

• Controllers manage logic

Features

• Filters, services

• Dependency injection

• Routing for SPA

Advantages

• Fast development

• Great UI control

• Reusable components

Disadvantages

• Performance issues for large apps

• Difficult debugging

Uses

• Dashboard applications

• Social media applications

• Admin panels

 J2EE (Java 2 Enterprise Edition)

Definition

J2EE is a platform for developing multi-tier,

enterprise-level Java applications.

Key Points

• Supports distributed systems

• Includes APIs like EJB, JPA, JMS, JDBC

Working Principle

• Uses multi-tier architecture: Client → Web

Tier → Business Tier → Database

• Supports server-side components (JSP,

Servlets, EJB)

Features

• Scalability

• Security

• Distributed computing

Advantages

• Platform-independent

• High security

• Reliable transaction support

Disadvantages

• Heavy framework

• Requires application servers

Uses

• Banking systems

• ERP applications

• Large enterprise portals

 JSP (Java Server Pages)

Definition

JSP is a server-side technology used to create

dynamic web pages using Java embedded in HTML.

Key Points

• HTML + Java code mix

• Compiled into servlets

Working Principle

1. JSP file sent to server

2. Converted into servlet

3. Servlet generates HTML dynamically

Features

• Tag libraries

• Expression language

• Easy integration with Java Beans

Advantages

• Easy to develop

• Good for dynamic content

• Powerful templating

Disadvantages

• Mixing HTML + Java becomes messy

• Not suitable for complex business logic

Uses

• E-commerce websites

• User dashboards

 Servlets

Definition

Servlets are Java programs that run on the server

and handle HTTP requests and responses.

Key Points

• Pure Java backend

• Platform-independent

Working Principle

1. Client sends request

2. Servlet processes it

3. Generates a dynamic response

(HTML/JSON/XML)

Features

• Multithreading

• Session management

• Filters and listeners

Advantages

• Highly secure

• Fast

• Efficient request handling

Disadvantages

• Hard to maintain large HTML output

• No built-in UI support

Uses

• Login systems

• Online forms

• REST APIs

 FINAL CONCLUSION (Exam Ready)

Software architecture implementation technologies

provide platforms, frameworks, and tools to convert

architectural designs into working systems.

• ADLs help in modeling architecture.

• Struts, JSP, Servlets, J2EE support enterprise-

level Java systems.

• Hibernate simplifies database operations.

• Node.js and AngularJS support modern web

apps and scalable client-server architecture.

इि technologies का सह selection software की
performance, scalability, maintainability और
security को significantly improve करता है।

Software Architecture Implementation Technologies

Software architecture implementation technologies

are the tools, frameworks, languages, and

middleware used to realize (implement) the

architectural design of a software system. These

technologies define how components interact,

communicate, store data, and deliver functionality.

1. Architecture Description Languages (ADLs)

Definition

ADLs are formal languages used to describe the

architecture of a software system, including

components, connectors, configurations, and

constraints.

Key Points

• Provide notation to represent architecture.

• Support static and dynamic analysis.

• Help in architecture documentation and

verification.

Examples:

ACME, Wright, AADL, Darwin.

Advantages

• Clear architectural documentation.

• Helps detect design errors early.

• Provides reusable patterns.

Disadvantages

• Steep learning curve.

• Limited industry adoption in some cases.

2. Struts Framework

Definition

Struts is an MVC-based Java Web Application

Framework used to build robust, maintainable web

applications.

Working Principle (MVC)

• Model → Business logic

• View → JSP pages

• Controller → ActionServlet manages

request/response

Uses

• Building enterprise-level Java web apps.

Advantages

• Clear separation of concerns.

• Easy to maintain large applications.

Disadvantages

• Heavy configuration (XML).

• Slower compared to modern frameworks.

3. Hibernate

Definition

Hibernate is a Java-based ORM (Object Relational

Mapping) framework that maps Java classes to

database tables.

Working

• Converts Java objects ↔ database rows.

• Eliminates JDBC code.

• Provides HQL (Hibernate Query Language).

Advantages

• Database-independent.

• Reduces SQL coding.

• Fast performance due to caching.

Disadvantages

• Complex for beginners.

• Slow for extremely large data sets.

4. Node.js

Definition

Node.js is a server-side JavaScript runtime built on

Google’s V8 engine.

Working

• Uses event-driven, non-blocking I/O.

• Handles thousands of concurrent

connections.

Uses

• Real-time apps (chat, gaming, streaming).

• REST APIs.

Advantages

• Extremely fast.

• Handles concurrency very well.

• Same language on client + server.

Disadvantages

• Not suitable for CPU-heavy tasks.

• Callback complexity.

5. AngularJS

Definition

AngularJS is a JavaScript-based front-end framework

for building dynamic single-page applications (SPAs).

Working

• Uses two-way data binding.

• MVC architecture.

Advantages

• Automatic UI updates.

• Large support community.

Disadvantages

• Slow for large applications.

• Learning curve is high.

6. J2EE (Java 2 Enterprise Edition)

Definition

J2EE is a platform for developing large-scale,

distributed, multi-tier enterprise applications in Java.

Includes:

JSP, Servlets, EJBs, JDBC, JMS, JNDI, RMI etc.

Advantages

• Secure, scalable, platform-independent.

• Rich set of APIs.

Disadvantages

• Complex architecture.

• Requires skilled developers.

7. JSP (Java Server Pages)

Definition

JSP is a server-side technology used to create

dynamic web pages using Java inside HTML.

Working

• JSP is compiled to a Servlet.

• Runs on the server and generates HTML for

the browser.

Advantages

• Easy to write.

• Tag libraries support reusable components.

Disadvantages

• Not suitable for complex business logic.

8. Servlets

Definition

Servlets are Java classes that handle HTTP requests

and generate responses.

Working

• Container (Tomcat) creates servlet object.

• Executes service(), doGet(), doPost().

Advantages

• Faster and more secure.

• Platform independent.

Disadvantages

• Manual HTML generation is tedious.

9. EJBs (Enterprise Java Beans)

Definition

EJBs are server-side components used to implement

business logic in enterprise-level applications.

Types

• Session Beans

• Entity Beans

• Message-Driven Beans

Advantages

• High security.

• Transaction management is automatic.

• Scalable for enterprise apps.

Disadvantages

• Heavy and complex.

• High learning curve.

Middleware Technologies

Middleware connects distributed systems and

provides communication, transactions, and resource

access.

10. JDBC (Java Database Connectivity)

Definition

JDBC is an API for connecting and executing queries

on a database from Java.

Advantages

• Direct SQL access.

• Platform-independent.

Disadvantages

• Requires a lot of coding.

• No object mapping (unlike Hibernate).

11. JNDI (Java Naming and Directory Interface)

Definition

JNDI provides naming and directory services for

locating resources like databases, queues, EJBs etc.

Uses

• Lookups of enterprise resources.

Advantages

• Simplifies resource access.

Disadvantages

• Complex to configure.

12. JMS (Java Message Service)

Definition

JMS enables asynchronous communication between

distributed components.

Working

• Message Producer → Queue/Topic →

Consumer

Advantages

• Loose coupling.

• Reliable communication.

Disadvantages

• Requires message server setup.

13. RMI (Remote Method Invocation)

Definition

RMI allows a Java program to invoke methods on an

object running on another JVM.

Uses

• Distributed Java applications.

Advantages

• Easy to use for Java-to-Java communication.

Disadvantages

• Not suitable for cross-language

communication.

14. CORBA (Common Object Request Broker

Architecture)

Definition

CORBA is a language-independent middleware that

allows communication between applications written

in different languages (C, C++, Java, Python etc.).

Advantages

• Platform and language independent.

• Supports complex distributed systems.

Disadvantages

• Very complex architecture.

• Setup cost is high.

Conclusion (English)

Software architecture implementation technologies

provide the necessary tools, frameworks, and

middleware to translate architectural designs into

real, working systems. These technologies ensure

scalability, reliability, communication, and data

management in enterprise applications.

निष्कर्ष (Hindi)

Software architecture ko implement karne ke liye

alag-alag technologies, frameworks aur middleware

use kiye jaate hain. Yeh tools system ko reliable,

scalable aur secure banate hain aur enterprise

applications ko smoothly chalne me madad karte

hain.

Role of UML in Software Architecture

1. Introduction

UML (Unified Modeling Language) is a standard

visual modeling language used to design, document,

and understand the architecture of a software

system.

It provides diagrams that represent structural and

behavioral aspects of the system, helping architects

make better design decisions.

2. Role of UML in Software Architecture

(i) Visual Representation of Architecture

UML provides clear and standardized diagrams

(class, component, deployment diagrams) to visually

represent system architecture.

This helps architects understand the overall structure

quickly.

(ii) Supports Architectural Decision-Making

Architectural design decisions such as layered

architecture, component interactions, module

dependencies, and system boundaries can be

modeled and analyzed using UML.

(iii) Communication Among Stakeholders

UML diagrams act as a common language between

architects, developers, testers, and clients.

Everyone understands the system design clearly,

reducing misunderstandings.

(iv) Documentation of Architecture

UML provides long-term documentation of the

architecture.

This becomes helpful for maintenance, future

development, onboarding new developers, and

audits.

(v) Modeling Structural Aspects

UML structural diagrams such as:

• Class Diagram

• Component Diagram

• Package Diagram

clearly model the static architecture of the

system.

(vi) Modeling Behavioral Aspects

Dynamic behavior is represented using:

• Sequence Diagrams

• Activity Diagrams

• State Machine Diagrams

This helps architects understand workflows,

message flow, user interactions, and runtime

behavior.

(vii) Supports Architectural Styles & Patterns

Architectural styles like layered architecture, client-

server, MVC and patterns such as singleton, adapter,

observer can be represented using UML diagrams.

(viii) Helps in Analysis and Validation

UML models highlight architectural problems such

as:

• High coupling

• Low cohesion

• Missing components

• Incorrect data flow

This helps validate architecture before

implementation.

(ix) Helps in System Integration Planning

Component and deployment diagrams show how:

• Modules interact

• Interfaces communicate

• Hardware connects

This supports integration planning and

deployment design.

(x) Reduces Complexity in Large Systems

By breaking the system into components, layers,

subsystems, packages, UML helps manage

complexity and improves overall architectural clarity.

3. Advantages of Using UML in Software Architecture

✓ Standard notation and universally accepted

Consistent modeling across teams.

✓ Makes architecture understandable and

maintainable

Clear diagrams make systems easy to grasp.

✓ Supports reuse of patterns and components

Encourages modular design.

✓ Helps detect design flaws early

Saves time and cost.

✓ Enhances communication

Everyone speaks the same “design language”.

4. Disadvantages of UML in Architecture

✗ Can become complex for large systems

Too many diagrams may confuse developers.

✗ Requires skilled designers

Wrong diagrams may mislead implementation.

✗ Time-consuming

Detailed modeling increases design time.

✗ Some diagrams are rarely used in industry

Thus developers may not maintain them later.

5. Conclusion (English)

UML plays a crucial role in software architecture by

providing a standard way to represent, document,

validate, and communicate architectural decisions. It

helps architects design systems more clearly and

ensures smooth implementation and maintenance.

निष्कर्ष (Hindi)

Software architecture me UML ek powerful tool hai

jo system ke structure aur behavior ko visually

dikhata hai. UML diagrams se architecture ko

samajhna, design karna, validate karna aur

communicate karna aasaan ho jata hai. Isse

development aur maintenance dono behtar hote

hain.

*** UNIT 4—

1. Definition of Software Architecture

Software Architecture

Software architecture is the fundamental

organization of a software system represented

through its components, their relationships, and the

principles guiding its design and evolution.

In simple terms:

Architecture defines “what the system contains”,

“how modules interact”, and “how the system will

evolve in future.”

2. Evolution of Software Architecture

Phase Description

1. Monolithic Systems

(1960–80s)

All code in one block; low

modularity.

2. Modular

Programming (1980–

90s)

System divided into

modules; improved

maintainability.

3. Client–Server

Architecture (1990s)

Two-tier & three-tier

models; separation of UI

and DB.

4. Component-Based

Architecture (2000s)

Reusable components like

EJB, COM, CORBA.

5. Service-Oriented

Architecture (SOA)

Business services exposed

as independent units.

6. Microservices

Architecture (2010+)

Small, independently

deployable services.

7. Cloud-Native &

Serverless Architecture

(Present)

Scalable, distributed,

event-driven systems.

Advantages: Better scalability, modularity

Disadvantages: Complexity increases over time

3. Software Components and Connectors

Components (WHAT)

• Independent functional units

• Examples: UI module, DB module, Payment

module

• Provide: services, data, business logic

Connectors (HOW)

• Define interactions between components

• Examples: API calls, message queues, RPC,

REST, events

Uses

• Improves modularity

• Easy maintenance

• Supports parallel development

Issues

• Interoperability

• Dependency management

• Performance overhead

4. Common Software Architecture Frameworks

1. Zachman Framework

• Enterprise architecture classification

• 6 perspectives (Planner → User → Designer)

2. TOGAF

• Provides ADM (Architecture Development

Method)

• Used for large organizations

3. 4+1 View Model (Philippe Kruchten)

• Logical view

• Development view

• Process view

• Physical view

• Use-case view

Advantages

• Standardization

• Better documentation

Disadvantages

• Complex

• Requires expertise

5. Architecture Business Cycle (ABC)

Architecture is influenced by:

1. Stakeholders

Customers, developers, managers.

2. Requirements

Functional + non-functional (performance, security).

3. Previous Designs / Organizational Goals

4. Development Constraints

Budget, time, tools.

Advantages

• Clear decision-making

• Balanced architecture

Disadvantages

• Conflicts among stakeholders

6. Architectural Patterns (Definitions + Working +

Uses + Advantages/Disadvantages)

(1) Layered Architecture

Definition: System divided into layers (UI, Business,

Data).

Working: Upper layers call lower layers.

Use: Web apps, enterprise apps.

Advantages: Easy to maintain.

Disadvantages: Performance overhead.

(2) Client–Server Architecture

Definition: Server provides services; client consumes.

Use: Banking, web systems.

Advantages: Centralized control.

Disadvantages: Server bottleneck.

(3) Microservices Architecture

Definition: App is divided into small independent

services.

Use: Netflix, Amazon.

Advantages: Scalability.

Disadvantages: Complex deployment.

(4) Event-Driven Architecture

Definition: Components communicate via events.

Use: Real-time apps.

Advantages: Highly responsive.

Disadvantages: Hard debugging.

(5) MVC (Model–View–Controller)

Definition: Separates data, UI, and logic.

Use: Web frameworks like Angular, Django.

Advantages: Parallel development.

Disadvantages: Complex for small apps.

7. Software Architecture Models

(Definition + Uses + Issues)

1. Structural Models

Describe organization of components and their

relationships.

Use: System overview

Issue: No runtime behavior shown.

2. Framework Models

Represent reusable architecture frameworks.

Use: Faster development

Issue: Limited flexibility.

3. Dynamic Models

Show system behavior over time (state change).

Use: Real-time apps

Issue: Hard to design.

4. Process Models

Represent processes, threads, communication.

Use: Concurrent systems

Issue: Synchronization issues.

8. Architecture Styles (With Key Points + Working)

1. Dataflow Architecture

Data moves through transformation steps.

Example: Compiler.

2. Pipes and Filters

Each filter performs a function; pipe carries data.

Use: Data processing apps.

3. Call and Return

Typical function-call based systems.

Use: Traditional program design.

4. Data-Centered Architecture

Central DB controlling all modules.

Use: ERP/Banking.

5. Layered Architecture

Already explained.

6. Agent-Based Architecture

Autonomous intelligent agents perform tasks.

Use: AI systems.

7. Microservices Architecture

Already explained.

8. Reactive Architecture

Event-driven, responsive, resilient.

Use: High-performance apps.

9. REST Architecture

Resource-based operations using HTTP.

Use: Web APIs.

9. Software Architecture Implementation

Technologies

ADLs (Architecture Description Languages)

• Used to describe components, connectors

• Examples: ACME, Wright

Struts (Java Framework)

• MVC-based

• For enterprise applications

Hibernate

• ORM framework (maps Java objects to DB

tables)

Node.js

• Server-side JavaScript

• Event-driven

AngularJS

• Front-end JS framework

• MVC-based

J2EE (JSP, Servlets, EJB)

• JSP → View

• Servlets → Controller

• EJB → Business logic

10. Middleware Technologies

JDBC

• Database connectivity

JNDI

• Naming and directory service

JMS

• Messaging services

RMI

• Remote method invocation

CORBA

• Language-independent distributed

communication

11. Role of UML in Software Architecture

Key Points

• UML gives visual representation

• Helps in communication

• Used to design structure + behavior

Important UML Diagrams

• Class diagram

• Use-case diagram

• Component diagram

• Deployment diagram

• Sequence diagram

Advantages: Easy understanding of architecture

Disadvantages: Time-consuming to model everything

12. Architecture Analysis & Design

Requirements for Architecture

• Functional

• Non-functional (performance, security,

usability)

• Constraints

Analysis Methods

• ATAM (Architecture Tradeoff Analysis

Method)

• SAAM (Software Architecture Analysis

Method)

Life-Cycle View

• Requirements → Design → Implementation

→ Testing → Maintenance → Evolution

13. Advantages and Disadvantages of Software

Architecture

Advantages

• Improves quality attributes

• Better maintainability

• Scalability

• Reusability

• Reduces cost and development effort

Disadvantages

• Requires expertise

• Time-consuming

• Initial high cost

• Wrong decisions cause system failure

 Conclusion (English)

Software architecture is the backbone of any

software system. It defines the structure, interaction,

and evolution of software components. A good

architecture ensures scalability, performance, and

maintainability throughout the software life cycle.

Proper architectural decisions made at the early

stages determine the long-term success and quality

of the system.

 निष्कर्ष (Hindi)

Software architecture ककसी भी software system की
र ढ़ होती है। यह system की सींरचिा, components के
सींबींध और भववष्य की growth को तय करती है। अगर
शुरुआत में architecture सह चिुा जाए, तो परूा
system तेज, सुरक्षित, scalable और maintainable बिता
है।

1. Cost Benefit Analysis Method (CBAM)

Definition

CBAM (Cost Benefit Analysis Method) is an

architecture evaluation method that calculates the

economic value of different architectural decisions

by analyzing their cost, benefits, and risks.

यह method architecture के options (strategies) का
आर्िषक मूकय निकालता है ताकक सबसे cost-effective

ववककप चुिा जा सके।

Key Concepts

• Architectural Strategies: Different design

choices (e.g., caching, load balancing).

• Utility: How much benefit a system gains

from a strategy.

• Cost: Money, time, resources required to

implement a strategy.

• Risk: Chance of failure or difficulty in

implementing the strategy.

• ROI: Return on investment for each

architectural choice.

Working Steps (CBAM Process)

Step 1: Identify Business Goals

• Performance, security, scalability, availability.

Step 2: Identify Architectural Strategies

Examples:

Caching, replication, compression, microservices,

new hardware.

Step 3: Assess Costs

• Development cost

• Maintenance cost

• Additional hardware cost

• Training cost

Step 4: Assess Benefits

• Performance improvement

• Response time reduction

• Reliability improvement

Step 5: Assign Utility Scores

Each strategy gets a utility value (0–100).

Step 6: Assess Risks

• Technical risk

• Cost overrun

• Integration difficulty

Step 7: Compute ROI

ROI = (Benefit – Cost) / Cost

Step 8: Select Best Strategy

Highest ROI + lowest risk = best architectural option.

Advantages

• Provides economic justification for

architectural decisions

• Balances cost, benefits, and risk

• Helps in long-term budget and planning

• Improves decision-making and transparency

Disadvantages

• Requires accurate cost estimation

• Time-consuming

• Complex when many strategies exist

• Depends heavily on expert judgment

2. Architecture Tradeoff Analysis Method (ATAM)

Definition

ATAM (Architecture Tradeoff Analysis Method) is a

method used to evaluate architectural decisions by

identifying their impact on quality attributes and

analyzing trade-offs among them.

ATAM quality attributes जैसे performance, security,

modifiability, availability पर architecture का प्रभाव
बताता है और trade-offs को identify करता है।

Key Concepts

• Quality Attribute Goals: Performance,

security, availability.

• Trade-offs: Improvement in one attribute may

degrade another.

Example: Increasing performance may reduce

security.

• Sensitivity Points: Parameters where small

change causes big impact.

• Risk Themes: Pattern of risks involved.

Working Steps (ATAM Process)

1. Present the ATAM

ATAM team explains goals and process.

2. Present Business Drivers

Stakeholders define:

• Main goals

• Constraints

• Priorities

3. Present Architecture

Architect explains:

• System design

• Major components

• Patterns used

4. Identify Architectural Approaches

List all major design techniques used.

5. Generate Quality Attribute Utility Tree

Quality attributes → scenarios

Example:

“System should respond within 2 seconds under

10,000 users.”

6. Analyze Architectural Approaches

Evaluate how architecture supports each scenario.

7. Identify Sensitivity Points

Where small change affects performance heavily.

8. Identify Trade-offs

Performance vs security vs cost.

9. Identify Risks

Integration issues, scalability challenges, etc.

10. Present Results

• Risks list

• Trade-off summary

• Architecture improvement suggestions

Advantages

• Evaluates quality attributes deeply

• Identifies risks early

• Helps stakeholders understand trade-offs

• Improves overall architecture quality

Disadvantages

• Time-consuming

• Requires expert architects

• Can be expensive for small projects

• Complexity increases with system size

3. CBAM vs ATAM (Difference Table)

Feature CBAM ATAM

Focus
Cost-benefit

evaluation

Quality attribute

evaluation

Goal
Economic

decision-making

Identify trade-offs &

risks

Input Cost, benefits, ROI
Architecture &

scenarios

Output ROI ranking Risk list, trade-offs

Use Budget planning
Architecture quality

improvement

4. Conclusion (English)

CBAM focuses on the economic evaluation of

architectural decisions, while ATAM focuses on

quality attribute trade-offs. Together, they ensure

both cost-effectiveness and high-quality architecture

design.

4. निष्कर्ष (Hindi)

CBAM architecture के लाभ–हानि और लागत को
समझकर सह ववककप चुििे में मदद करता है, जबकक
ATAM architecture के quality attributes और trade-

offs का मूकयाींकि करता है। दोिों methods लमलकर
एक मजबूत और cost-effective architecture तैयार
करिे में उपयोगी हैं।

1. Active Reviews for Intermediate Design (ARID)

Definition

ARID (Active Reviews for Intermediate Design) is an

architecture evaluation technique used to review

partially-complete or intermediate-level design

before the final architecture is completed.

It helps stakeholders identify design problems early

using review scenarios and active participation.

Simple Meaning:

ARID एक review method है जो design के बीच वाल े
(intermediate) चरण में ह उसके issues और risks को
पकड़ लेता है।

Purpose / Why ARID is Used?

• To evaluate incomplete or draft architectural

design

• To detect risks early

• To get feedback from stakeholders

• To ensure design is aligned with requirements

• To check feasibility before full

implementation

Key Concepts

• Scenarios: Use-cases or situations used for

design evaluation

• Reviewers: Stakeholders, architects,

developers

• Stimulus-Response: Inputs given to the design

to test behavior

• Intermediate Design: Not final, still under

development

Working Steps (ARID Process)

Step 1: Preparation

• Identify review team

• Collect requirements

• Define review goals

• Select scenarios for testing

Step 2: Overview Presentation

Architect presents:

• Design overview

• Major components

• Design rationale

Step 3: Scenario Generation

Stakeholders create real-world usage scenarios:

• Performance scenarios

• Security scenarios

• Reliability scenarios

Step 4: Active Evaluation

Reviewers walk through each scenario against the

intermediate design:

• Check feasibility

• Identify issues

• Detect design gaps

Step 5: Group Discussion

• Reviewers debate flaws

• Suggest improvements

Step 6: Documentation

• List of issues

• List of risks

• Recommendations for improvement

Advantages

• Evaluates design early

• Reduces redesign cost

• Involves stakeholders actively

• Improves quality of design

• Identifies missing requirements

Disadvantages

• Time-consuming

• Requires expert reviewers

• Depends on quality of scenarios

• Not suitable for very small projects

2. Attribute Driven Design Method (ADD)

Definition

ADD (Attribute Driven Design) is a software

architecture design method in which the architecture

is created based on quality attribute requirements

(performance, modifiability, security, usability, etc.).

The design grows from high-level components to

detailed components using quality-attribute-driven

decisions.

Simple Meaning:

ADD एक top-down design method है जहााँ
architecture quality attributes के आधार पर तैयार
ककया जाता है।

Purpose / Why ADD is Used?

• To design architecture systematically

• To satisfy quality attributes (performance,

modifiability)

• To make design structured and repeatable

• To support complex, large systems

• To reduce architectural ambiguity

Key Concepts

• Quality Attribute Scenarios

• Design Decisions

• Decomposition (breaking system into

modules)

• Tactics (techniques used to achieve quality

attributes)

• Refinement (stepwise detailing of

components)

Working Steps (ADD Process)

Step 1: Gather Requirements

Functional + quality attribute requirements.

Step 2: Identify Architectural Drivers

• Quality attributes

• Constraints

• Business goals

Step 3: Choose Architectural Patterns / Tactics

Examples:

• Layers

• Client-server

• Caching

• Load balancing

• Encryption

Step 4: Initialize High-Level Design

Create the first-level decomposition:

• Major subsystems

• Modules

• Connectors

Step 5: Decompose Each Component

Break large components into smaller modules.

Step 6: Analyze Against Scenarios

Check if design satisfies:

• Performance

• Security

• Scalability

Step 7: Iterate and Refine

Repeat decomposition until the design is complete.

Advantages

• Architecture aligns with quality requirements

• Systematic and structured design

• Helps in complex systems

• Reusable design strategies

• Supports top-down refinement

Disadvantages

• Time-consuming

• Requires detailed requirement knowledge

• Needs expert architects

• High cost for small projects

3. Difference Between ARID and ADD

Feature ARID ADD

Purpose
Evaluate

intermediate design

Create architecture

based on attributes

Stage

Used
Mid-design stage Initial design stage

Focus
Detect issues &

risks

Satisfy quality

attributes

Outcome
List of issues and

improvements

Complete

architectural design

Nature Review method Design method

Conclusion (English)

ARID focuses on reviewing an intermediate design

through scenarios to identify risks early, while ADD

focuses on designing an architecture that prioritizes

quality attributes. Together, they support systematic

design and evaluation of robust software

architectures.

निष्कर्ष (Hindi)

ARID का उद्देश्य design की कलमयों को बीच में ह
पहचाििा है, जबकक ADD architecture को quality

attributes के आधार पर तैयार करिे की प्रकिया है।
दोिों methods लमलकर software architecture को
मजबूत और त्रुहट-मुक्त बिाते हैं।

 ARCHITECTURE REUSE & DOMAIN-SPECIFIC

SOFTWARE ARCHITECTURE — COMPLETE NOTES

1. Architecture Reuse

Definition

Architecture Reuse is the practice of using previously

designed and validated architectural components,

patterns, frameworks, or complete architectures in

new software systems to save time, cost, and effort.

Simple Meaning:

Purane, tested architecture ko dobara use karna taa

ki naya system jaldi aur sahi quality ka ban sake.

Key Concepts

• Reusable Components: Modules, services,

APIs

• Reusable Patterns: MVC, layered architecture,

client-server

• Reusable Frameworks: Angular, Spring,

Django

• Reuse Levels: Code reuse, component reuse,

architecture reuse

Types of Reuse

1. Component Reuse

Ready-made components (authentication module,

payment module) reused in new projects.

2. Architectural Pattern Reuse

Existing patterns like MVC, microservices reused

directly.

3. Framework Reuse

Reuse of existing frameworks that provide structure

+ libraries.

4. Complete System Reuse

Reuse entire architecture (e.g., ERP system reused

for different companies).

Why Architecture Reuse is Needed?

• Reduces development time

• Reduces cost

• Improves system quality

• Helps in faster delivery

• Reduces design errors

Advantages

• Saves time and effort

• Reduces development cost

• Ensures high reliability (already tested)

• Promotes standardization

• Increases productivity

Disadvantages

• Reused architecture may not fit every

requirement

• Less flexibility

• Integration issues

• Dependent on old system constraints

• Hard to customize heavily

2. Domain-Specific Software Architecture (DSSA)

Definition

Domain-Specific Software Architecture (DSSA) is an

architecture specially designed for a particular

domain such as banking, healthcare, telecom, e-

commerce, aviation, etc.

Simple Meaning:

Ek specific industry/field ke liye banaya gaya

architecture jisme us domain ki sari needs already

covered hoti hain.

Key Concepts

• Domain: Specific area like banking, medical,

education, transport

• Domain Knowledge: Expert understanding of

that field

• Reusable Domain Components: Banking: loan

module, KYC module

• Domain Patterns: e.g., Healthcare → patient

record pattern

Why DSSA is Designed?

To solve problems of one particular domain

efficiently using:

• Reusable solutions

• Domain patterns

• Standard workflows

Features of DSSA

1. Domain Specificity

Architecture is tailored to only one domain.

2. Reuse of Domain Knowledge

Reusing solutions that worked earlier in the

same domain.

3. Standardization

Ensures common structure across multiple

similar applications.

4. Higher Productivity

Because many components already exist.

Process / Working Stages of DSSA

1. Domain Analysis

• Identify domain requirements

• Collect common features

• Identify constraints

(Example: Banking → accounts, loans, KYC,

security)

2. Domain Design

• Create general architecture for that domain

• Define domain components

• Select suitable architectural style

(microservices, layered, etc.)

3. Domain Implementation

• Develop reusable modules

• Create templates, patterns, code generators

• Implement domain services

4. Domain Reuse

• Reuse architecture, patterns, and modules in

new applications

Examples of DSSA

• Banking DSSA: Account system, loan

management, KYC

• Healthcare DSSA: Patient records,

prescriptions, insurance

• E-commerce DSSA: Product catalog, payment

gateway, cart

• Telecom DSSA: Billing, recharge, usage

tracking

Advantages

• Better performance for specific domain

• High reliability (domain tested)

• Faster development and deployment

• High reusability

• Reduced development cost

• Better quality and consistency

Disadvantages

• Limited to one domain

• Hard to apply to general systems

• Requires domain experts

• High initial cost

• Updating DSSA for new trends is difficult

Difference Between Architecture Reuse vs DSSA

Feature
Architecture

Reuse
DSSA

Focus
Reuse of existing

architecture

Architecture for a

specific domain

Scope General-purpose Domain-specific

Need Reduce time/cost

Solve domain

problems

efficiently

Reusability
Reusable across

multiple systems

Reusable only in

the same domain

Expertise

Needed

General

architecture

knowledge

Domain

knowledge

required

Conclusion (English)

Architecture reuse helps reduce development time

and cost by using existing architectural elements,

while DSSA provides specialized architectures

tailored for a particular domain. DSSA ensures high

efficiency within a domain, and reuse ensures

productivity across multiple systems.

निष्कर्ष (Hindi)

Architecture reuse से परुािे और tested architecture

को दोबारा इस्तेमाल करके समय और लागत बचाई
जाती है। वह ीं DSSA ककसी एक ववशरे् िेत्र (domain)

के ललए ववशेर् architecture तयैार करता है, ल्जससे उस
िेत्र की समस्याएाँ अर्धक तजेी और गुणवत्ता के साि
हल हो पाती हैं।

UNIT 5 –

Software Architecture Documentation – Complete

Notes (Print-Ready)

1. Definition

Software Architecture Documentation is a formal

description of a software system’s structure,

components, connectors, interfaces, constraints, and

architectural decisions. It serves as a blueprint of the

system, enabling stakeholders to understand the

system design and its evolution.

Key Concept:

• Acts as a communication tool between

developers, testers, managers, and clients.

• Preserves architectural decisions for future

reference.

• Supports design, implementation,

maintenance, and evolution of the system.

2. Principles of Sound Documentation

Key Concepts

1. Completeness – All components, connectors,

interfaces, and decisions are documented.

2. Correctness – Reflects the system’s intended

structure, behavior, and constraints.

3. Consistency – Uniform notation, naming, and

alignment across views.

4. Clarity – Simple language, diagrams, and

tables for easy understanding.

5. Multiple Views – Structural, behavioral,

deployment, and development views for

different stakeholders.

6. Design Rationale – Reasons behind every

architectural decision are recorded.

7. Maintainability – Documentation can be

updated easily as the system evolves.

Working

• Begins at the high-level architecture stage.

• Documents all modules, components,

interfaces, and interactions.

• Maintains separate views (structural,

behavioral, deployment, development).

• Continuously updated as design evolves.

Advantages

• Clear understanding of the system.

• Better communication among stakeholders.

• Supports decision-making and trade-offs.

• Improves maintainability and reduces errors.

• Facilitates reuse in future projects.

• Helps in project planning and resource

allocation.

Disadvantages

• Time-consuming to create and maintain.

• Requires skilled architects; poor

documentation may mislead.

• Needs frequent updates as the system

evolves.

• Over-documentation may confuse

developers.

• Complex diagrams may be hard for non-

technical stakeholders.

• Can slow down agile or fast-paced

development.

3. Refinement

Definition

Refinement is the process of converting high-level

architecture into detailed, implementable design.

Key Concepts

• Bridges abstract design to concrete

implementation.

• Defines sub-components, responsibilities,

interfaces, and interactions.

Working

1. Identify high-level components.

2. Break into sub-components/modules.

3. Define interactions/connectors.

4. Specify interfaces, inputs, outputs, and

constraints.

5. Iterate until each module is ready for

implementation.

Advantages

• Reduces ambiguity.

• Makes development, testing, and

maintenance easier.

Disadvantages

• Time-consuming for large systems.

• Requires detailed analysis and skilled

architects.

4. Context Diagrams

Definition

A context diagram is a high-level visual

representation of the system as a black box and its

interactions with external entities.

Key Concepts

• Defines system boundaries.

• Identifies external entities (users, systems,

devices).

• Shows inputs, outputs, and data flows.

Working

• Draw system as a central box.

• Identify external entities and their

interactions.

• Show data or control flows connecting

entities and the system.

Advantages

• Provides quick overview of system scope.

• Clarifies system boundaries.

• Helps in requirement validation.

Disadvantages

• Cannot show internal structure.

• Limited use for detailed design or complex

interactions.

5. Variability

Definition

Variability is the ability of an architecture to adapt to

different configurations or changes without major

redesign.

Key Concepts

• Supports multiple product variants.

• Allows modification, addition, or removal of

features.

• Ensures flexibility and scalability.

Working

• Functional Variability: Optional/configurable

features.

• Structural Variability: Replaceable or

alternative components.

• Behavioral Variability: Runtime workflow

changes.

• Deployment Variability: Adaptation to

different environments (cloud, on-premise).

Advantages

• Increases flexibility.

• Reduces cost and effort for multiple product

variants.

Disadvantages

• Complexity in managing variations.

• Requires careful planning and design

patterns.

6. Software Interfaces

Definition

Software interfaces define how components

communicate with each other or with external

systems.

Key Concepts

• Programmatic Interfaces (APIs)

• User Interfaces (UI)

• Hardware Interfaces

• Network Interfaces

• Data Interfaces

Working

• Each interface specifies operations/methods.

• Defines input/output data, protocols,

constraints, and security.

• Enables integration and independent

development.

Advantages

• Ensures modularity and independent

development.

• Facilitates integration and testing.

• Prevents errors due to miscommunication.

Disadvantages

• Incorrect interface design can cause system

failures.

• Complex interfaces may be hard to

understand or maintain.

 Summary:

Software Architecture Documentation ensures a

system is well-planned, understandable,

maintainable, and adaptable. By following principles

of sound documentation, applying refinement, using

context diagrams, managing variability, and clearly

defining interfaces, teams can develop high-quality

software efficiently.

Software Architecture Concepts

1. Refinement

Definition:

Refinement is the process of transforming a high-

level, abstract architecture into a detailed,

implementable design.

Key Concepts:

• Bridges the gap between high-level design

and implementation.

• Defines sub-components, modules,

responsibilities, and interactions.

• Ensures that all architectural decisions are

actionable.

Working:

1. Identify high-level components.

2. Decompose components into sub-

components/modules.

3. Define connectors and interactions.

4. Specify interfaces, inputs/outputs, and

constraints.

5. Iterate until each module is ready for coding.

Advantages:

• Reduces ambiguity for developers.

• Simplifies implementation and testing.

• Ensures consistency between design and

code.

Disadvantages:

• Can be time-consuming for large systems.

• Requires skilled architects for proper

decomposition.

2. Context Diagrams

Definition:

A context diagram is a high-level visual

representation of a system showing its interactions

with external entities while treating the system as a

black box.

Key Concepts:

• Shows system boundaries.

• Highlights external entities (users, other

systems, devices).

• Shows data flows (input/output) between the

system and its environment.

Working:

• Draw the system as a central box.

• Add all external entities interacting with the

system.

• Connect entities with arrows showing data or

control flows.

Advantages:

• Provides a clear overview of system scope.

• Helps stakeholders quickly understand

interactions.

• Useful for requirement validation.

Disadvantages:

• Cannot show internal structure of the system.

• Limited for detailed architectural or

behavioral analysis.

3. Variability

Definition:

Variability is the ability of an architecture to adapt to

different configurations or changes without major

redesign.

Key Concepts:

• Supports multiple product variants.

• Enables easy addition, removal, or

modification of features.

• Ensures flexibility and scalability of the

system.

Working:

• Functional Variability: Optional/configurable

features.

• Structural Variability: Replaceable or

alternative components.

• Behavioral Variability: Changes in workflow

or runtime behavior.

• Deployment Variability: Ability to deploy in

different environments (cloud, on-premise,

hybrid).

Advantages:

• Provides flexibility to adapt to changing

requirements.

• Reduces cost and effort when building similar

variants.

Disadvantages:

• Managing variability increases complexity.

• Requires careful design and planning.

4. Software Interfaces

Definition:

Software interfaces define how system components

communicate with each other or with external

systems.

Key Concepts:

• Programmatic Interfaces (APIs): Functions or

methods exposed for component interaction.

• User Interfaces (UI): Screens, forms,

dashboards for end-users.

• Hardware Interfaces: Communication with

devices or sensors.

• Network Interfaces: Protocols, endpoints, and

sockets for communication.

• Data Interfaces: Schemas, message formats,

and exchange rules.

Working:

• Each interface defines operations/methods.

• Specifies inputs, outputs, constraints, and

protocols.

• Enables independent module development

and integration.

• Ensures consistent communication between

components.

Advantages:

• Supports modular and independent

development.

• Facilitates integration and testing.

• Prevents errors caused by miscommunication.

Disadvantages:

• Poorly defined interfaces can cause system

failures.

• Complex interfaces may be hard to

understand and maintain.

 Summary:

• Refinement turns high-level design into

implementable modules.

• Context Diagrams visually show system

boundaries and interactions.

• Variability allows architecture to adapt to

changes and multiple variants.

• Software Interfaces define communication

rules between components and systems.

All four are essential parts of software architecture

documentation to ensure clarity, maintainability,

scalability, and ease of development.

 Documenting the Behavior of Software Elements

and Systems

1. Definition

Documenting the behavior of software elements and

systems refers to the process of formally recording

how components, modules, and the overall system

operate under different scenarios. This includes their

interactions, state changes, responses to inputs, and

expected outputs.

Key Concept:

• Focuses on dynamic aspects of software,

unlike structural documentation which

emphasizes static components.

• Ensures developers, testers, and stakeholders

understand how the system behaves at

runtime.

2. Key Concepts

1. Behavioral Documentation:

o Captures the operations, workflows,

and interactions between system

elements.

o Helps model scenarios, use cases, and

system reactions.

2. Dynamic Modeling:

o Uses diagrams such as sequence

diagrams, state charts, activity

diagrams, and collaboration diagrams

to show system behavior.

3. Interaction Modeling:

o Documents how different components

or modules communicate.

o Includes message passing, function

calls, event handling, and data flow.

4. Event-Driven Behavior:

o Captures system responses to internal

and external events.

o Important for real-time and reactive

systems.

5. State Modeling:

o Represents states of objects or system

components and transitions based on

events or conditions.

3. Working / How to Document Behavior

1. Identify Key Software Elements:

o Determine the modules, components,

or objects whose behavior needs

documentation.

2. Use Behavioral Diagrams:

o Sequence Diagrams: Show how

messages flow over time between

objects.

o State Diagrams: Represent object or

system state changes.

o Activity Diagrams: Show workflows

and activities.

o Collaboration Diagrams: Highlight

interaction among components.

3. Describe Input and Output:

o Document how each element

responds to inputs or triggers.

o Specify outputs, including errors or

exceptions.

4. Define Event Handling:

o Capture how events affect

components or the system.

o Include synchronous/asynchronous

operations.

5. Iterate and Refine:

o Review documentation for

completeness and correctness.

o Update as system design evolves.

4. Advantages

• Provides clear understanding of dynamic

system behavior.

• Assists in testing and validation of functional

requirements.

• Facilitates integration and system-level

debugging.

• Helps stakeholders visualize complex

interactions.

• Supports requirement traceability and

compliance verification.

5. Disadvantages

• Can be time-consuming, especially for large

systems.

• Complex diagrams may be difficult for non-

technical stakeholders to understand.

• Requires skilled architects or designers to

document accurately.

• Needs continuous updates as system evolves,

otherwise becomes outdated.

• Over-documentation may lead to information

overload.

6. Summary

• Behavioral documentation focuses on

dynamic aspects of software elements and

systems.

• It uses diagrams and textual descriptions to

capture interactions, state changes, and

responses to events.

• Essential for understanding, testing,

integrating, and maintaining complex

software systems.

*** Software Architecture Documentation Package –

Seven-Part Template

1. Definition

A documentation package is a structured collection

of documents that describes a software system’s

architecture. Using a seven-part template ensures

that all essential aspects of the architecture are

captured systematically.

Key Concept:

• Provides a comprehensive, standardized view

of the system architecture.

• Supports development, testing, maintenance,

and future evolution.

• Helps stakeholders understand both

structural and behavioral aspects of the

system.

2. Purpose

• Ensure clarity and consistency across all

architectural documents.

• Facilitate communication among developers,

testers, and stakeholders.

• Enable reuse, maintenance, and scalability.

• Support decision-making and trade-off

analysis during development.

3. Seven-Part Template

The seven-part template is widely recommended

(e.g., IEEE 1471 / ISO/IEC 42010 standard). Each part

captures a specific aspect of the architecture.

Part 1: Introduction

• Purpose: Explain the goals, scope, and

objectives of the architecture documentation.

• Content:

o Overview of the system.

o Stakeholders and their concerns.

o System objectives and constraints.

• Key Concept: Sets the context for the entire

documentation package.

Part 2: Architectural Representation

• Purpose: Present the architecture using

diagrams and textual descriptions.

• Content:

o High-level structural diagrams.

o Component relationships and

connectors.

o Views such as structural, behavioral,

deployment, and development.

• Key Concept: Offers a visual and textual

blueprint of the system.

Part 3: Architectural Views and Viewpoints

• Purpose: Show different perspectives tailored

for various stakeholders.

• Content:

o Viewpoints: Define conventions,

notations, and concerns for each view.

o Views: Structural view, behavioral

view, deployment view, development

view.

• Key Concept: Enables stakeholders to focus

on relevant concerns without being

overwhelmed by unnecessary details.

Part 4: Architecture Rationale

• Purpose: Explain the reasoning behind design

and technology choices.

• Content:

o Decisions on patterns, frameworks,

and technologies.

o Trade-offs and alternatives

considered.

o Constraints that influenced decisions.

• Key Concept: Preserves decision-making

history for future reference and maintenance.

Part 5: Architectural Interfaces

• Purpose: Document interactions between

components and with external systems.

• Content:

o APIs, data formats, protocols.

o Event handling and communication

mechanisms.

o Security and access control rules.

• Key Concept: Ensures components

communicate correctly and can be developed

independently.

Part 6: Quality Attributes and Scenarios

• Purpose: Capture non-functional

requirements that the system must satisfy.

• Content:

o Performance, reliability, scalability,

maintainability, security.

o Scenarios illustrating how the system

behaves under different conditions.

• Key Concept: Helps analyze trade-offs and

validate architecture against stakeholder

concerns.

Part 7: Appendices and References

• Purpose: Include supplementary information

that supports understanding.

• Content:

o Glossary of terms.

o External references, standards, and

frameworks used.

o Detailed diagrams, tables, or

additional notes.

• Key Concept: Provides supporting material

without cluttering the main document.

4. Advantages of Seven-Part Documentation Package

• Comprehensive coverage of system

architecture.

• Provides a structured, standardized approach.

• Enhances communication and understanding

among stakeholders.

• Preserves design rationale and decisions for

future reference.

• Supports quality analysis, maintenance, and

system evolution.

5. Disadvantages

• Time-consuming to prepare and maintain.

• Requires skilled architects to create accurate

and meaningful documentation.

• May become outdated if not regularly

updated.

• Complexity may overwhelm small teams or

non-technical stakeholders.

6. Summary

A seven-part architecture documentation package

ensures that all key aspects of software

architecture—structure, behavior, interfaces, quality

attributes, rationale, and supporting information—

are captured systematically. It provides a complete,

stakeholder-focused, and maintainable blueprint for

the software system.

