UNIT 1---
Overview of Software Development Methodology

A Software Development Methodology is a
structured process used to plan, design, develop, test,
and maintain software. It provides a framework for
managing the entire software life cycle and ensures
that development is systematic, organized, and
predictable.

Purpose of Software Development Methodology
e To improve software quality
e To reduce development time
e To minimize project risks
e Toincrease customer satisfaction

e To make development manageable and
measurable

Common Software Development Methodologies

1. Waterfall Model
The Waterfall Model is one of the earliest and
simplest software development models. It is a
linear and sequential approach where each
phase must be completed before the next
phase begins. There is little to no overlap
between phases.

Key Concept:

e Works like a waterfall, flowing downward
through distinct phases.

e Focuses on documented requirements and
systematic execution.

e Linear and sequential
e Each phase completes before the next starts
e Easy to manage but rigid

e Suitable for small projects with fixed
requirements

2. Incremental Model
e Development happens in increments/parts
e Each increment adds new features

e Flexible and easy to test

3. Spiral Model
e Combines prototyping + risk management
e Project progresses in “spirals”
e Good for large, high-risk projects
4. Agile Methodology
e lterative and incremental
e Focus on customer feedback
o Fast delivery of working software
¢ Includes Scrum, Kanban, XP
5. V-Model
e Verification and Validation model
e Testing is planned parallel to development
e Suitable for safety-critical systems
6. Prototype Model
e A quick working model (prototype) is built
¢ Helps understand user requirements

e Useful when requirements are unclear

Software Quality Model — Overview

A Software Quality Model defines the attributes,
characteristics, and standards that determine the
quality of a software product.

It helps measure whether the software meets
customer expectations and industry standards.

The most widely used software quality model is
McCall’s Quality Model and ISO/IEC 9126 Model.

1. McCall’s Quality Model

McCall’s model defines 3 major categories of software

quality:

A. Product Operation (How well the software
works?)

e Correctness - Does it meet requirements?
¢ Reliability - Does it work without failure?

o Efficiency - Uses resources properly?

o Integrity - Security and protection
e Usability - Easy to use?
B. Product Revision (How easily can it be changed?)
e Maintainability
o Flexibility
e Testability

C. Product Transition (How well does it adapt to new
environment?)

e Portability
o Reusability

e Interoperability

2. ISO/IEC 9126 Software Quality Model

ISO 9126 divides software quality into 6 main
categories:

1. Functionality

e Accuracy of functions

e Suitability

e Security
2. Reliability

e Maturity

e Fault tolerance
e Recoverability
3. Usability
e Learnability
e Understandability
e Operability
4. Efficiency
e Time behavior
e Resource utilization
5. Maintainability
e Analyzability

e Changeability

o Stability
o Testability
6. Portability

o Adaptability
o Installability
¢ Co-existence with other systems

These attributes help evaluate the overall quality of
software.

Conclusion (English)

Software development methodologies provide
systematic frameworks to create software efficiently
and predictably. Quality models like McCall’s and ISO
9126 help measure software’s performance, reliability,
maintainability, and user satisfaction. Together,
methodologies and quality models ensure that the
final product meets both functional and non-
functional requirements.

*Different Models of Software Development and
Their Issues

Software development models define the process
and structure used to build software. Each model has
its own advantages and limitations, and is used
depending on project size, risk, and requirements.

Software development models provide structured
methods for planning, designing, developing, testing,
and maintaining software. Each model has
advantages but also specific issues/limitations that
affect its suitability for different projects.

Below are the major models and their issues:

1. Waterfall Model
Description

A linear sequential approach where each phase
(Requirement - Design = Coding - Testing -
Maintenance) must be completed before the next
begins.

Issues

e Very rigid, no changes allowed later

e Late testing, so problems are found very late
e Not suitable for complex or large projects

e Not ideal when requirements are unclear

e High risk and uncertainty

2. V-Model (Validation & Verification Model)
Description

An extension of the Waterfall model where each
development phase has a corresponding testing
phase.

Issues
e Same rigidity as Waterfall
e No flexibility for changing requirements
e Requires heavy planning

e Not suitable for projects requiring frequent
updates

3. Incremental Model
Description

Software is built and delivered in increments or
modaules. Each increment adds new features.

Issues
e Requires careful planning

e Integration of increments may cause
problems

e Each increment demands testing - increases

effort

e Poor design in early increments affects later
ones

4. Iterative Model
Description

The system is developed in cycles (iterations). Each
iteration improves the previous version.

Issues
e Requires strong project management
e Architecture may remain unstable early on
¢ Repeated iterations increase time and cost

o Difficult to control continuous changes

5. Prototype Model
Description

A working prototype is built early to understand
unclear requirements. Feedback is used to refine the
system.

Issues

¢ Users may misunderstand prototype as final
system

e Frequent requirement changes cause design
instability

¢ Building multiple prototypes increases cost

¢ Poor prototype may lead to wrong
requirements

6. Spiral Model
Description

Combines prototyping with risk analysis.
Development proceeds in loops (spirals).

Issues
e \Very expensive
e Needs highly skilled risk analysis experts
¢ Too complex for small projects

¢ Time-consuming because of repeated cycles

7. Agile Model
Description

An iterative and incremental model focusing on
customer collaboration, quick delivery, and
adaptability. Includes Scrum, Kanban, XP, etc.

Issues

e Requires highly skilled and experienced
teams

¢ Minimal documentation - future
maintenance becomes difficult

e Hard to estimate budget and time
e Frequent changes may cause scope creep

e Not suitable for very large teams without
coordination

8. RAD Model (Rapid Application Development)
Description

Focuses on fast development using reusable
components and strong user involvement.

Issues
e Needs skilled developers

e Requires high user involvement (not always
possible)

e Not suitable for complex systems

e Needs strong hardware and advanced tools -
expensive

9. Big Bang Model
Description

Very little planning; developers start coding without
clear requirements. Used for small or experimental
projects.

Issues
o Extremely high risk
e No structure or formal process
e Requirements may keep changing
e Final output may not satisfy customer

e Not suitable for large or important projects

Conclusion (English)

Different software development models provide
different approaches to building software, but each
comes with limitations. Rigid models like Waterfall
and V-Model struggle with changing requirements,
risk-focused models like Spiral are costly, and flexible
models like Agile depend heavily on team skill and
communication. Choosing the right model depends
on project size, complexity, and requirement
stability.

Conclusion (Hindi — Roman Hindi)

Har software development model ki apni strengths
aur weaknesses hoti hain. Waterfall jaise models
rigid hote hain, Spiral mehenga hota hai, Agile skilled
team maangta hai, aur Big Bang high risk deta hai.
Isliye project ki requirement, size, complexity aur risk
ke base par hi sahi model select karna chahiye.

**Evolution of Software Architecture

Software Architecture has evolved over time due to
changes in technology, user needs, system
complexity, and business environments.

Earlier systems were small and simple, but modern
systems are distributed, scalable, cloud-based, and
need to handle millions of users.

This evolution can be understood in five major
phases:

1. Monolithic Architecture (1960s — 1980s)
Characteristics
e Entire software built as one single unit

e All components (Ul, logic, database) tightly
coupled

e No separation of concerns
Advantages
¢ Simple to develop and deploy

¢ Suitable for small applications

Issues
o Difficult to scale
e Hard to modify and maintain

e Small change requires redeploying entire
system

e Low flexibility

This was the earliest stage of software architecture.

2. Layered Architecture (1980s — 1990s)
(Also called N-Tier Architecture)
Characteristics
e System divided into layers such as:
o Presentation Layer
o Business Logic Layer
o Data Access Layer
o Database Layer
e Clear separation of concerns
Advantages
e Better maintainability
o Easier testing
e Changes in one layer do not affect others
Issues
o Still mostly centralized
e Limited scalability
¢ Performance bottlenecks in middle layers

This improved structure but still lacked flexibility for
large-scale systems.

3. Client-Server Architecture (1990s)
Characteristics
e Splits system into two main components:
o Client (Ul / Front-end)

o Server (Business Logic + Database)

¢ Enabled distributed computing
Advantages

o Better performance

o Multiple clients connect to one server

e Supports remote access
Issues

e Server becomes bottleneck

o Limited scalability

« Maintenance becomes difficult when users
grow

This was a major shift from centralized systems to
distributed environments.

4. Service-Oriented Architecture — SOA (2000s)
Characteristics

e Uses services that communicate over a
network

o Each service performs a specific business
function

¢ Communication mostly via SOAP and XML
Advantages
e Reusable services

¢ Better integration between large enterprise
systems

¢ Technology-independent services
Issues

e Heavy protocols (SOAP, WSDL)

¢ High overhead

e Slower performance

e Complex service management

SOA introduced modularity but lacked speed and
simplicity.

5. Microservices Architecture (2010s — Present)
Characteristics
e System split into small, independent services

e Each microservice has its own database and
deployment

e Communication via REST APIs, gRPC, Message
Queues

e Highly distributed and scalable
Advantages

e High scalability

e Faster development and deployment

e Technology freedom (each service can use
different tech)

e Faultisolation — one service failure does not
break entire system

Issues
e Complex to manage

e Requires DevOps, containerization (Docker),
and orchestration (Kubernetes)

e Distributed debugging is difficult

This is the most widely used architecture today.

6. Cloud-Native & Serverless Architecture (Future &
Current Trend)

Characteristics
e Applications run on cloud infrastructure

e Use Functions-as-a-Service (FaaS) like AWS
Lambda, Azure Functions

e Fully managed services
Advantages

e Auto-scaling

¢ No server management

e Only pay for the resources used
Issues

e Vendor lock-in

¢ Cold start problems

o Complex distributed design

Conclusion (English)

Software architecture evolved from simple
monolithic systems to highly scalable microservices
and serverless architectures. Each stage addressed
limitations of earlier models, improving modularity,
performance, scalability, and maintainability. Today’s
architectures focus on cloud-native, distributed, and
scalable solutions to support modern applications.

Conclusion (Hindi — Roman Hindi)

Software architecture ka safar monolithic
applications se shuru hua aur aaj microservices aur
serverless jaise advanced models tak pahunch gaya
hai. Har stage ne pichhle model ki problems ko solve
kiya hai, jaise scalability, flexibility, aur
maintainability. Aaj ka focus cloud-native aur
distributed systems par hai jo bade level par users ko
smoothly handle kar sakte hain.

**Software Components and Connectors

Software Architecture is built using two primary
building blocks:

1. Software Components
2. Software Connectors

These two define what parts a system has and how
those parts communicate.

1. Software Components

Definition

A software component is an independent, reusable,
self-contained unit of software that performs a

specific function.
It encapsulates data and behavior.

Key Points

¢ Components are the main functional units of
a system

They hide internal details (encapsulation)

They interact with other components through

well-defined interfaces

They can be replaced or updated
independently

Examples of Components

Ul component

Login component

Payment component
Database access component
Search component

Authentication module

Characteristics

Reusability = can be reused in other
applications

Replaceability > one component can be
updated without affecting others

Independence - performs a specific task

Encapsulation - internal logic hidden from
outside

Types of Components

1. Presentation Components

o User interface, screens, forms

2. Business Logic Components

o Rules, processing logic

3. Data Access Components

o Database queries, CRUD operations

4. Utility Components

o Logging, configuration, encryption

2. Software Connectors

Definition

A software connector is the mechanism that enables

communication and interaction between

components.

It defines how components will exchange data,
control signals, and messages.

Key Points

Connectors describe interactions, not
behavior

They represent relationships between
components

They can be protocols, data flows or
communication links

Examples of Connectors

Function call

API call (REST, gRPC)

Message queue (Kafka, RabbitMQ)
Database connection

Shared memory

Events and event handlers

Network protocols (HTTP, TCP)

Characteristics

Communication = enables data flow

Coordination - manages how components
interact

Conversion -» may convert data formats

Routing - sends messages to correct
component

Types of Connectors

1. Procedure Call Connectors

o Function calls, methods, RPC
Data Access Connectors

o SQL queries, ORM, database
connections

Event Connectors

o Publish-subscribe, event listeners
Message Connectors

o Message queues, message brokers

Network Connectors

o HTTP, TCP/IP, REST APIs
6. File Connectors

o File reading/writing

Difference Between Components and Connectors
Components Connectors

Represent functional Represent communication
units links

Provide behavior Provide interaction

Have interfaces and
Have protocols or channels

methods
Examples: login Examples: API call, event,
module, Ul message bus

Simple Example
Suppose you have an E-commerce Application:
Components

e Product Catalog Component

e Cart Component

e Payment Component

e User Authentication Component
Connectors

e REST API calls between components

o Database connection for data storage

o Message queue for order notifications

e Event system for “Payment Successful”

Conclusion (English)

Software components are the functional building
blocks of a system, while connectors specify how
these components communicate and interact.
Together, they form the foundation of software

architecture by defining system structure, behavior,

and communication patterns.

Conclusion (Hindi — Roman Hindi)

Software components system ke kaam karne wale
parts hote hain, jabki connectors un components ke
beech communication ka tarika batate hain. Dono
milkar software architecture ka base banate hain aur
system ko organized, scalable aur maintainable
banate hain.

** Common Software Architecture Frameworks

A Software Architecture Framework provides a
structured method to describe, design, document,
and analyze software architecture.

It defines principles, standards, viewpoints, and best
practices for creating high-quality software systems.

These frameworks ensure that the architecture is
organized, maintainable, scalable, and aligned with
business goals.

1. Zachman Framework
Description

¢ One of the earliest and most widely used
architecture frameworks

e Based on a 2D matrix with 6 rows
(perspectives) and 6 columns (aspects)

Perspectives (Rows)
1. Planner
2. Owner
3. Designer
4. Builder
5. Subcontractor
6. User
Aspects (Columns)
¢ What (Data)

e How (Process)

e Where (Network)

e Who (People)

e When (Time)

e Why (Motivation)
Key Features

e Ensures complete documentation

e Very structured and detailed
Issues

e Too complex for small projects

e Hard to implement fully

2. TOGAF (The Open Group Architecture Framework)
Description

The most popular enterprise architecture framework
used globally.

Based on the ADM - Architecture Development
Method.

Key Phases in ADM

Preliminary

e Business Architecture

¢ Information System Architecture
e Technology Architecture

e Opportunities & Solutions

e Migration Planning

e Implementation Governance

Architecture Change Management

Key Features
e Provides guidelines, templates, standards
e Helps organizations align IT with business
e Supports continuous improvement

Issues
e Requires trained architects

e Heavy documentation

3. 4+1 View Model (by Philippe Kruchten)

A practical architecture framework widely used in
software development.

It uses 5 views to describe architecture:
1. Logical View - functionality (classes, objects)

2. Process View — performance, concurrency,
threads

3. Development View — module/packaging
structure

4. Physical View — deployment on hardware

5. Scenarios (Use Cases) — connect all views
together

Key Features
e \Very easy to understand
o Covers all important architecture aspects
e Widely used in UML and industry

Issues

¢ High-level only; no detailed guidance

4. RM-ODP (Reference Model for Open Distributed
Processing)

Description

A framework specifically for distributed and
network-based systems.

It defines 5 viewpoints:
1. Enterprise View
2. Information View
3. Computational View
4. Engineering View
5. Technology View
Key Features
¢ Best for large distributed systems

¢ Clear separation of concerns

Issues
e Too abstract

e Hard to implement in small systems

5. Federal Enterprise Architecture Framework (FEAF)
Description

Used mainly by U.S. Government agencies.
Helps integrate large public-sector IT systems.

Key Features
e Provides reference models:

o Business

o Service
o Data
o Technical

o Performance

e Ensures interoperability between large
organizations

Issues
e Not commonly used in private companies

e Documentation-heavy

6. DoDAF (Department of Defense Architecture
Framework)

Description

Used for military, defense, and high-security systems.

Key Features
e Very strict and reliable

e Provides detailed operational and technical
views

e Useful for mission-critical systems

Issues

e Too complex for normal software projects

¢ High learning curve

Conclusion (English)

Software architecture frameworks provide structured
models to design, document, and analyze complex
software systems. Frameworks like TOGAF, Zachman,
4+1 View Model, RM-ODP, FEAF, and DoDAF help
architects organize architecture into views, improve
communication, and align IT with business
objectives.

Conclusion (Hindi — Roman Hindi)

Software architecture frameworks ek systematic
tarika dete hain jisse large software systems ko
design aur manage kiya ja sake. TOGAF, Zachman,
4+1 Model aur RM-ODP jaise frameworks
architecture ko clear views me divide karke
development ko aasaan, organized aur business
goals ke according banate hain.

** Architecture Business Cycle (ABC)

The Architecture Business Cycle (ABC) is a model that
explains how a software architecture is created,
influenced, and evolved over time. It shows the
relationship between stakeholders, business goals,
technical environment, and the architecture itself.

ABC basically tells us:

Architecture is not created in isolation — it is shaped
by people, business goals, organization, previous
systems, and technology trends.

Key Elements of Architecture Business Cycle

1. Stakeholders

These are the people who have interest in the

system.
Examples:

Customers

End users
Developers
Project managers
Investors

Testers

They influence architecture by giving requirements

like:

Performance
Security
Scalability

Budget constraints

2. Business Goals

Architecture must support business needs such as:

Time-to-market

Low cost

High reliability
Competitive advantage

Future scalability

Business goals strongly shape early architecture

decisions.

3. Technical Environment

Architecture is influenced by:

Existing systems (legacy)
Available hardware
Programming languages

Platforms (cloud/mobile/web)

¢ Industry standards

Example: If an organization always uses Java + Spring
Boot, the architecture tends to use the same stack.

4. The Architect

The architect’s experience, skills, past projects, and
design philosophy influence the architecture.

For example:

An architect strongly experienced in microservices
will lean towards a microservice-based architecture.

5. The Developed Architecture

After considering all influences, the architecture is
created.
It includes:

e Structure of components
e Connectors
e Design patterns

¢ Quality attributes (performance, security,
etc.)

6. How Architecture Influences the Organization Back
After the architecture is built, it affects:

e Team structure

o Development process

e Future projects

¢ Reuse of components

e Costs and timelines

Example:
A microservices architecture requires:

e DevOps team
¢ Containerization

e CI/CD pipelines
So it changes the organization’s working style.

7. Feedback Loop

ABC is a cycle, meaning:

e Architecture is influenced by stakeholders
and environment

¢ Architecture influences the system and
organization

e New systems influence future architectures

This becomes a continuous loop of influence.

Example of Architecture Business Cycle

Suppose a company wants to build an online food
delivery system like Zomato.

Influences on Architecture:

o Stakeholders: customers want fast delivery
updates

e Business goal: scale to 10 million users

e Technical environment: company already uses
cloud + microservices

e Architect: experienced in distributed systems
Final outcome:

e They choose microservices architecture with
event-driven messaging.

e Later, this architecture forces the company to
hire DevOps experts, adopt Kubernetes, etc.

e This changes organizational processes —
completing the cycle.

Conclusion (English)

The Architecture Business Cycle explains that
software architecture is shaped by stakeholders,
business goals, technology environment, and the
architect’s experience. In return, the architecture
influences the development process and the
organization. It is a continuous cycle of influence that
ensures the system meets both technical and
business needs.

¥ (Hindi)

Architecture Business Cycle I drdT & &
stakeholders, business goals, technology ik
architect & 31@'313' ¥ vsmfad gxar %I e ﬁ',
R fRAT IAT architecture WITeA 3R R
9fshaT & gsTIfad a1 81 39 R I§ T
TATAR Tela qrell T & AT dehetehr AR
ATTHRF T F HJfAd Far B

**%* 1. Definition of Architectural Pattern

An Architectural Pattern is a reusable, high-level
design structure that provides a standard way to
organize software components, define their
interactions, and support system quality attributes
like performance, scalability, and maintainability.
These are templates, not code, used by software
architects to design large systems.

2. Important Architectural Patterns (With Uses +
Advantages + Issues)

1. Layered Architecture (N-Tier Architecture)
Definition:

System is divided into layers like Presentation,
Business Logic, and Data Access. Each layer performs
a separate role.

Uses:
e Web applications
e Enterprise apps
e Banking and ERP systems
Advantages:
o Easy to maintain and update
o High separation of concerns
o Each layer can be tested independently

Issues / Disadvantages:

e Slow performance due to multiple layers
¢ Not suitable for real-time systems

o Upper layers depend on lower layers

2. Client-Server Architecture
Definition:

Clients send requests; server processes and
responds. Server contains main data + logic.

Uses:

e Websites

e Email systems

o Database applications
Advantages:

o Centralized control and security

o Easy to update server

e Clients can be lightweight
Issues / Disadvantages:

e Server overload

e Single point of failure

e High network dependency

3. Microservices Architecture
Definition:

Application is divided into small, independent

services. Each service can run and deploy separately.

Uses:
e Large-scale apps (Amazon, Netflix, Uber)
e Cloud-native applications
Advantages:
e Highly scalable
e Independent deployment

e Faultisolation

« Different services can use different
technologies

Issues / Disadvantages:
e Very complex to develop and manage
e Requires DevOps, containers, CI/CD
o Difficult debugging

¢ Communication overhead

4. Event-Driven Architecture
Definition:

Components communicate via events. When an
event occurs, other components react to it.

Uses:

¢ Real-time apps

e loT systems

o Stock trading, live notifications
Advantages:

e High performance

¢ Loose coupling

e Scalable and responsive
Issues / Disadvantages:

e Event tracking is difficult

o Debugging is complex

¢ Requires message brokers

5. Pipe and Filter Architecture
Definition:

Data flows through a pipeline where each filter
processes data and sends it forward.

Uses:
e Compilers
o Data transformation pipelines

e Batch processing systems

Advantages:
e Easy to modify or add filters
e Highly reusable filters
Issues / Disadvantages:
e Not ideal for interactive systems
o Data transfer overhead

¢ No backward communication

6. MVC (Model-View—Controller)
Definition:

System divided into Model (data), View (Ul),
Controller (input handling).

Uses:
e Web frameworks (Django, Laravel, Rails)
e GUI applications
Advantages:
e Separation of Ul and logic
o Easier maintenance
o Multiple views can share one model
Issues / Disadvantages:
e Too many files and complexity

e Controller may become overloaded

7. Publish—Subscribe Architecture (Observer
Pattern)

Definition:

Publishers send messages; subscribers receive only
the messages they are subscribed to.

Uses:
¢ Notification systems
e Social media feeds
e Messaging apps (MQTT, Kafka)

Advantages:

¢ Real-time updates
e Scalable
e Loose coupling
Issues / Disadvantages:
o Hard to track delivery sequence
¢ Debugging is difficult

¢ Message overhead

8. Broker Architecture
Definition:

A broker manages communication between clients
and servers in a distributed environment.

Uses:
o Distributed systems
e Middleware
e Message queuing systems (Kafka, RabbitMQ)
Advantages:
¢ Reduces complexity of communication
o Good scalability
e Supports heterogeneous systems
Issues / Disadvantages:
¢ Broker becomes performance bottleneck
¢ Broker failure affects system

o Slightly higher latency

Conclusion (English)

Architectural patterns provide proven structural
templates for designing software systems. Each
pattern has specific uses, advantages, and issues.
Choosing the right pattern depends on system
requirements such as performance, scalability,
maintainability, and complexity.

fasFY (Hindi)

Architectural patterns TFeddR fATeH Hr
gafeyd 3R yermdt & & B w6 & v
IR 3 weieT F §1 & Yoo F v 3uh,
fred A Fwdl W AR Far B

*okk Reference Model — Complete Explanation

1. Definition of Reference Model

A Reference Model is a high-level, abstract
framework that describes the important elements of
a system and their relationships.

It does not specify implementation, but provides a
conceptual blueprint for understanding and
designing architectures.

In simple words:

A reference model explains what components exist
in a system and how they logically relate — not how
to implement them.

2. Purpose of a Reference Model

To provide a common vocabulary for
designers and developers

e To act as a guideline for creating system
architectures

e To show basic functions required in a system

e To help compare different architecture
designs

3. Features of Reference Model

e Abstract (high-level idea, not actual system)

¢ Technology independent
¢ Reusable across multiple architectures
¢ Shows relationships, not implementations

e Helps in communication between
stakeholders

4. Uses of Reference Model

« Used as a foundation to create reference
architectures

¢ Helps in standardization of system design
e Helps in teaching and documentation

¢ Used for evaluating and comparing
architectural alternatives

o Provides baseline structure for designing
systems

5. Example of a Reference Model
Example 1: OSI Reference Model (Networking)

OSI model is a 7-layer reference model that explains
how communication happens between devices.

Layers:
1. Physical
2. Data Link
3. Network

4. Transport
5. Session

6. Presentation
7. Application

Note: OSI Model is a reference model, not an actual
implementation.

Example 2: E-commerce Reference Model

A reference model for online shopping typically
includes:

e User Interface

e Product Catalog
e Shopping Cart
e Payment Processing

e Order Management

T R_AF conceptual structure IdTdT ?’ — actual

code Flffl

6. Difference Between Reference Model and

Reference Architecture
Reference Model Reference Architecture

High-level abstract
concept

More detailed structure

Describes what the Describes how it can be

system needs built

. May include technology
Technology-independent .
suggestions

No components or Has components +

connectors interactions

Advantages of Reference Model

1. Provides a Common Standard

FaH Th ST T HHSH # Aee T ¢,
S ¥A communication 3T XY g1

2. Technology-Independent Design

Eb’lé‘ specific language, tool T platformiﬁ'
dependency sTgl gdll & system & use f&AT AT
dhdr gl

3. Reusable Structure

3?& model I TR-TR] multiple architectures ¥
apply fFaT ST Whar gl

4. Clear Understanding of System Components

IardT & T system & FIF-HlT @ essential
eIementsB’l’ﬁ il'l‘i%'ﬂ' 3T 3T relation FAT %‘I

5. Helps in Comparing Architectures

faffi=T architectures T reference model & match
F& T A compare fFAT IT GFaT ¢l

6. Improves Documentation and Teaching

Students 3R developers@l?-ﬁ F fow complex
systems THSTAT 3THTT @ ST 2

7. Foundation for Reference Architectures

H TUR ATAST 3TN detailed architecture dAR
e Jmar §1

X Disadvantages / Issues of Reference Model

1. Too Abstract (Very High-Level)

Actual implementation details sT§T &dT, foraa
beginners confuse & §Fd %I

2. Not Suitable for Direct Implementation

Reference model #del concept 9dTdT &; 3&
directly use (& software sTgl S=ITAT ST HehdTl

3. Interpretation May Differ

Different architects S8 3Tel9T-3Tel9T oig & HHST
¥oa ¢ SEa inconsistency 3T Wahd! gl

4. Not Updated Quickly

Technology 9g< fast dcerd! 8, dAfeheT reference
models EIE?I’ rarely update G %I

5. Limited Practical Guidance

Real-world issues o1& performance, security,

scalability—model 7 details sTgT gl

6. No Actual Components or Connectors

Model # RF logical idea grdT %‘; actual
architecture §dTt & fAIT extra effort ilﬂ%'ﬂ'l

Conclusion (English)

Reference models are powerful conceptual tools that
guide understanding and design of software systems.
However, they are abstract and cannot be directly
implemented, requiring additional architecture
work.

¥ (Hindi)

Reference models fATeH H HSA kliry IETIED]
A H AcE Ha ?,@ﬁw_rl' q H§H high-levels’lﬁ'
§ 3R 3§ WY implement AT fHAT ST FHATI
sAfAT 3¢ R IR & &7 F sEATT
ST Bl

Software Architecture Models (Full University
Exam Answer)

Software architecture models describe different
views of a software system to understand its
structure, behavior, and interactions. These models
help architects, developers, and stakeholders
visualize the system before development.

£) structural Model
Definition (Exam-Ready)

A structural model represents the static structure of
a system by showing components, modules, sub-
systems, interfaces, and the relationships between
them.

Explanation

e It shows what components exist in the
architecture.

e It focuses on class diagrams, component
diagrams, module diagrams.

¢ No runtime behavior — only static view.
Uses

e To understand system organization

¢ For module decomposition
e For code planning and documentation

¢ Helps identify dependencies and data
structures

Advantages

¢ Provides clear system overview

e Easy to maintain and update

¢ Helps identify reusable components

o Excellent for early design reviews
Disadvantages

e Does not show runtime behavior

e May become outdated if code changes

¢ Complex systems can become difficult to
diagram

Common Issues

e Over-simplification

¢ Misleading due to missing dynamic behavior
Example

e UML class diagrams

¢ Component diagrams showing Ul layer,
business layer, database layer

£3 Framework Model
Definition (Exam-Ready)

A framework model defines a predefined
architectural skeleton containing reusable
components, libraries, patterns, and guidelines on
which application-specific code is built.

Explanation
¢ Gives a ready platform to build the system.
¢ Defines how components should interact.

e Examples: .NET Framework, Spring
Framework, Django

Uses

o Faster development

o Standardized code structure

e Enforces best practices

e Reduces development effort
Advantages

e High reusability

e Reduces time and cost

e Provides security, performance optimization,
and libraries

o Encourages consistent architecture
Disadvantages

e Learning curve is high

e Framework limitations restrict flexibility

e Upgrading framework may break
compatibility

Issues

e Vendor lock-in

e Heavy frameworks may slow performance
Example

e Spring MVC architecture

e Android application architecture

E) Dynamic Model
Definition (Exam-Ready)

A dynamic model represents the runtime behavior of
a system, showing how components interact,
respond to events, change states, and exchange
messages during execution.

Explanation

e Shows how the system behaves rather than
how it is structured.

¢ Includes sequence diagrams, activity
diagrams, state diagrams.

e Focuses on control flow and data flow during
execution.

Uses

¢ Understanding object interactions
¢ Communication patterns between modules
o Designing workflows
o Describing state transitions
Advantages
¢ Shows realistic system behavior
¢ Helps detect logical and runtime errors
e Useful for simulation and testing

¢ Improves understanding of complex
interactions

Disadvantages
e More difficult to model
¢ Requires detailed knowledge of system logic
¢ Can become complex for large systems
Issues
e Frequent changes during development

e Hard to maintain consistency with
implementation

Example
¢ Sequence diagram of login process

¢ State diagram of ATM machine

) Process Model
Definition (Exam-Ready)

A process model describes the concurrent processes,
threads, synchronization mechanisms, and
communication between parallel activities in a
software system.

Explanation

¢ Shows how multiple components run
simultaneously.

¢ Handles deadlocks, race conditions,
concurrency control.

¢ Focuses on multi-threaded and parallel
system design.

Uses

e Designing distributed systems

e Scheduling, threading, concurrency

e Real-time systems like OS, embedded systems

e Network communication design
Advantages

e Helps plan concurrency

e Improves performance understanding

e Avoids synchronization issues

o Essential for multi-user systems
Disadvantages

e Hard to design and test

e Complex for beginners

o Difficult to debug race conditions
Issues

o Deadlocks

e Resource contention

e Thread synchronization errors
Example

e Client-server communication

e Operating system process architecture

e Multi-threaded banking system

Conclusion (Full Marks)

Software Architecture Models provide different
perspectives of a system.

e Structural models show static organization.

¢ Framework models give reusable
architectural templates.

¢ Dynamic models show runtime interactions.

e Process models manage concurrency and
parallelism.

Together, they help architects design reliable,
efficient, and maintainable software systems.

** Software Architecture Styles (Full Combined
Answer — Exam Ready)

Software Architecture Styles define standard ways of
organizing a software system, deciding how
components communicate, how data flows, and how
control moves in the system. Each architecture style
has its own working principle, benefits, and
limitations.

A=r gsiy important architecture styles Teh & S9E
detailed H FdTT AT &

£} Dpata-Flow Architecture
Definition

A data-flow architecture organizes the system
around continuous data movement, where data
flows through multiple processing steps.

Key Points
e Focuses on data transformation
¢ Components perform fixed operations
o Data moves in sequences

Working Principle

¢ Input = Processing Step1 > Step2 > ... >
Output

o Each step receives data, processes it, and
forwards it.

Uses
¢ Signal processing
e Compilers
o Data pipelines
Advantages
e High reusability
¢ Easy to understand
e Good for sequential processes

Disadvantages

e Not suitable for complex logic
o Difficult to manage control decisions
Example

e Compiler phases

£3 Pipes and Filters Architecture

Definition

It consists of filters (processing units) connected by

pipes (data channels).

Key Points
o Each filter performs one function
e Pipes carry data between filters
e Output of one = input of next

Working Principle

Data enters the first filter, gets transformed, and

passes through multiple filters until final output.

Uses

e Streaming systems

e Audio/video processing

e Unix pipelines
Advantages

e High modularity

o Replace filters easily

e Supports parallel processing
Disadvantages

e Requires uniform data format

e Can be slow for large data
Example

cat file | grep word | sort

E) call and Return Architecture

Definition

A hierarchical architecture where one module calls
another and receives control back after completion.

Key Points

e Based on top-down design

e Control flows through function calls
Working Principle

Main program -> calls subprogram - returns back -
continues execution.

Uses
¢ Procedural systems
¢ Simple applications
Advantages
e Simple design
e Clear control flow
Disadvantages
o Deep nesting increases complexity
e Poor scalability
Example

C/C++ programs with multiple function calls.

) Dpata-Centered Architecture (Repository Model)
Definition

System organized around a central shared data
repository accessed by multiple components.

Key Points

e Central database

e All clients interact with it

o Tight integration with data
Working Principle

Clients send requests - Repository processes =
Sends back results.

Uses
¢ Banking

e ERP

e Cloud storage
Advantages

e High data integrity

o Easy data management
Disadvantages

e Single point of failure

e Performance bottleneck
Example

DBMS, Blackboard system

) Layered Architecture
Definition

System divided into hierarchical layers, each
performing a specific role.

Key Points
o Each layer depends on only the layer below
e Separation of concerns

Working Principle

User request - Presentation layer - Business layer
->» Data layer - Response back to user.

Uses

e Web applications

e Operating systems
Advantages

e Easy maintenance

e High modularity
Disadvantages

e Slow due to multiple layers

e Hard to skip layers
Example

3-tier architecture: Ul - Logic - Database

3 Agent-Based Architecture

Definition

Consists of autonomous, intelligent agents that
sense, reason, and act independently.

Key Points
o Agents are independent
e They can communicate
o They make decisions
Working Principle

Agent senses environment - Processes internally -
Performs action - Communicates with others if
needed.

Uses

¢ Robotics

e Al systems

¢ Monitoring systems
Advantages

¢ Highly flexible

e Adaptive behavior
Disadvantages

o Designing intelligent agents is difficult

e Communication overhead
Example

Multi-agent surveillance drones

E2 Microservices Architecture
Definition

Application is divided into independent, small
services, each responsible for a single business
function.

Key Points
e Each service has its own database
e Communication through APIs
¢ Independent deployment

Working Principle

Client - API Gateway -» Specific Microservice -
Database - Response.

Uses

e E-commerce

e Cloud applications

e Large enterprises
Advantages

e High scalability

e Independent updates

o Technology flexibility
Disadvantages

e Complex communication

e Requires DevOps
Example

Netflix, Amazon microservices

) Reactive Architecture
Definition

Builds systems that are responsive, resilient, elastic,
and message-driven, as per the Reactive Manifesto.

Key Points
e Asynchronous behavior
e Event-driven communication
e High performance

Working Principle

Events/messages trigger actions = System responds
immediately - Maintains resilience and elasticity.

Uses
e Real-time systems
e loT
e Stock market apps
Advantages

e High responsiveness

e Fault-tolerance

e Scales easily
Disadvantages

e Complex design

o Difficult debugging
Example

Akka reactive systems

£ REST (Representational State Transfer)
Definition

REST is a distributed architecture using stateless
client-server communication over HTTP.

Key Points
o Stateless
e Uses HTTP methods (GET, POST, PUT, DELETE)
e Resource-based communication

Working Principle

Client sends request -> Server returns resource
representation - No session stored.

Uses

e Web APIs

¢ Mobile app backends

e Cloud services
Advantages

o Lightweight

e Fast

e Platform-independent
Disadvantages

e Not good for complex transactions

¢ Limited built-in security
Example

Google Maps API, Twitter API

FINAL CONCLUSION (Exam Ready)

Software architecture styles provide standard
solutions for organizing a system.

o Dataflow and Pipes & Filters handle data
movement.

e Call and Return suits procedural systems.
o Data-centered centralizes data.
e lLayered improves modularity.

e Agent-based enables intelligent distributed
behavior.

e Microservices increase scalability.

o Reactive architecture supports high
responsiveness.

e REST enables lightweight distributed
communication.

Correct selection of architecture style ensures
performance, scalability, maintainability, and
reliability of the final system.

UNIT 3---
Technologies (Full Exam Answer)

Software Architecture Implementation

Software architecture is implemented using various
technologies, tools, frameworks, and platforms that
help in building large-scale, maintainable, and high-
performance software systems. These technologies
support different architectural styles such as layered
architecture, MVC, microservices, and client-server
architecture.

A important technologiesﬁw ¥ 3R exam-
friendly dll&r & T 1w gl

£} software Architecture Description Languages
(ADLs)

Definition

ADLs are formal languages used to describe, specify,
analyze, and model the architecture of software
systems.

Key Points
¢ Used for high-level architectural modeling

o Describe components, connectors,
configurations

o Provide textual or graphical notation
Working Principle

¢ Architect defines components + connectors
using ADL

e ADL validates structure and constraints

¢ Supports simulation, analysis, and verification
Features

¢ Formal specification

¢ Reusability

o Early design validation
Advantages

¢ Reduces design errors

¢ Helps detect mismatches early

e Supports documentation and communication
Disadvantages

e Requires expertise

¢ Not suitable for low-level design
Examples

e AADL (Architecture Analysis & Design

Language)
e ACME
o Wright

e UML (semi-formal ADL)

o Safety-critical systems
o Large enterprise applications

o Embedded software

£} struts Framework
Definition

Apache Struts is an MVC-based Java framework used
to build web applications.

Key Points
e Based on Model-View-Controller architecture

e Provides form beans, action classes, JSP
integration

Working Principle

1. User sends request

2. Controller (ActionServlet) handles request

3. Business logic executed via Action class

4. Response returned through JSP View
Features

o Easy configuration

e Centralized controller

e XML-based architecture
Advantages

e Good separation of concerns

e Reusable components

e Supports internationalization
Disadvantages

e Complex XML configuration

¢ Not suitable for modern SPA apps

e Banking web apps
e Educational portals

o Enterprise admin dashboards

E) Hibernate

Definition

Hibernate is an ORM (Object Relational Mapping)
framework that maps Java objects to database
tables.

Key Points

¢ Eliminates JDBC complexity

o Automatically manages SQL queries
Working Principle

e Java class € Database table mapping

¢ CRUD operations auto-generated using
HQL/Criteria API

Features

¢ Lazyloading

e Caching

e Transaction management
Advantages

o Faster development

e Reduces SQL code

o Database-independent
Disadvantages

e Learning curve

¢ Complex debugging
Uses

¢ Inventory management

o Billing systems

o eCommerce applications

3 Node.js
Definition

Node.js is a server-side JavaScript runtime
environment built on Google’s V8 engine.

Key Points
¢ Event-driven
e Non-blocking 1/0

o Ideal for scalable applications

Working Principle Features

e Single-threaded event loop handles multiple o Filters, services

requests .
e Dependency injection

e Asynchronous callbacks improve performance]
e Routing for SPA

Features
Advantages

e Fast execution
¢ Fast development

e Rich package ecosystem (NPM) Great Ul control

e Cross-platform
¢ Reusable components

Advantages .
Disadvantages

e High performance]
¢ Performance issues for large apps

¢ Real-time capabilities
P o Difficult debugging

o Easy to scale horizontally

Disadvantages
€ o Dashboard applications

¢ Not suitable for CPU-heavy tasks . . L.
¢ Social media applications

e Complex callback handling Admin panels

Uses
o Real-time chat applications . .
3 J2EE (Java 2 Enterprise Edition)

e Streaming apps
Definition

e Online games . . .
J2EE is a platform for developing multi-tier,

o REST APIs enterprise-level Java applications.
Key Points
E) Angularis e Supports distributed systems
Definition ¢ Includes APIs like EJB, JPA, JMS, JDBC
AngularlsS is a JavaScript-based front-end framework Working Principle

developed by Google for building dynamic single-
velon i :l (gSPA) Hiicing e sing e Uses multi-tier architecture: Client - Web
agea cations s).
page appi Tier = Business Tier = Database

Key Points .
e Supports server-side components (JSP,
e Follows MVC/MVVM Servlets, EJB)
e Uses two-way data binding Features
Working Principle e Scalability
e Model & View automatically synchronized e Security
e Directives extend HTML o Distributed computing

e Controllers manage logic Advantages

e Platform-independent

e High security

e Reliable transaction support
Disadvantages

e Heavy framework

e Requires application servers
Uses

e Banking systems

e ERP applications

o Large enterprise portals

E2 ISP (Java Server Pages)
Definition

JSP is a server-side technology used to create

dynamic web pages using Java embedded in HTML.

Key Points

e HTML + Java code mix

e Compiled into servlets
Working Principle

1. JSP file sent to server

2. Converted into servlet

3. Servlet generates HTML dynamically
Features

e Tag libraries

e Expression language

o Easy integration with Java Beans
Advantages

e Easy to develop

e Good for dynamic content

o Powerful templating
Disadvantages

e Mixing HTML + Java becomes messy

¢ Not suitable for complex business logic

Uses
o E-commerce websites

e User dashboards

) servlets

Definition

Servlets are Java programs that run on the server

and handle HTTP requests and responses.
Key Points

e Pure Java backend

¢ Platform-independent
Working Principle

1. Client sends request

2. Servlet processes it

3. Generates a dynamic response
(HTML/JSON/XML)

Features

e Multithreading

e Session management

e Filters and listeners
Advantages

e Highly secure

e Fast

o Efficient request handling
Disadvantages

e Hard to maintain large HTML output

e No built-in Ul support

e Login systems

e Online forms

e RESTAPIs

FINAL CONCLUSION (Exam Ready)

Software architecture implementation technologies
provide platforms, frameworks, and tools to convert
architectural designs into working systems.

e ADLs help in modeling architecture.

e Struts, JSP, Servlets, J2EE support enterprise-
level Java systems.

¢ Hibernate simplifies database operations.

e Node.js and AngularJS support modern web
apps and scalable client-server architecture.

8T technologies %T Hal selection software FY
performance, scalability, maintainability iR

security FT significantly improve FIdT g1

Software Architecture Implementation Technologies

Software architecture implementation technologies
are the tools, frameworks, languages, and
middleware used to realize (implement) the
architectural design of a software system. These
technologies define how components interact,
communicate, store data, and deliver functionality.

1. Architecture Description Languages (ADLs)
Definition

ADLs are formal languages used to describe the
architecture of a software system, including
components, connectors, configurations, and
constraints.

Key Points
e Provide notation to represent architecture.
e Support static and dynamic analysis.

e Help in architecture documentation and
verification.

Examples:
ACME, Wright, AADL, Darwin.
Advantages
e Clear architectural documentation.

e Helps detect design errors early.

¢ Provides reusable patterns.
Disadvantages
e Steep learning curve.

e Limited industry adoption in some cases.

2. Struts Framework
Definition

Struts is an MVC-based Java Web Application
Framework used to build robust, maintainable web
applications.

Working Principle (MVC)
e Model - Business logic
e View -> JSP pages

e Controller - ActionServlet manages
request/response

Uses

¢ Building enterprise-level Java web apps.
Advantages

e Clear separation of concerns.

o Easy to maintain large applications.
Disadvantages

¢ Heavy configuration (XML).

¢ Slower compared to modern frameworks.

3. Hibernate
Definition

Hibernate is a Java-based ORM (Object Relational
Mapping) framework that maps Java classes to
database tables.

Working
e Converts Java objects ¢> database rows.
o Eliminates JDBC code.
e Provides HQL (Hibernate Query Language).

Advantages

e Database-independent.

e Reduces SQL coding.

o Fast performance due to caching.
Disadvantages

e Complex for beginners.

e Slow for extremely large data sets.

4. Node.js
Definition

Node.js is a server-side JavaScript runtime built on
Google’s V8 engine.

Working
e Uses event-driven, non-blocking 1/0.

¢ Handles thousands of concurrent
connections.

Uses
e Real-time apps (chat, gaming, streaming).
o REST APIs.
Advantages
e Extremely fast.
e Handles concurrency very well.
e Same language on client + server.
Disadvantages
e Not suitable for CPU-heavy tasks.

e Callback complexity.

5. Angularls

Definition

AngularlsS is a JavaScript-based front-end framework
for building dynamic single-page applications (SPAs).

Working
e Uses two-way data binding.

e MVC architecture.

Advantages

e Automatic Ul updates.

e Large support community.
Disadvantages

¢ Slow for large applications.

¢ Learning curve is high.

6. J2EE (Java 2 Enterprise Edition)
Definition

J2EE is a platform for developing large-scale,

distributed, multi-tier enterprise applications in Java.

Includes:
JSP, Servlets, EJBs, JDBC, JMS, JNDI, RMI etc.
Advantages
e Secure, scalable, platform-independent.
e Rich set of APIs.
Disadvantages
o Complex architecture.

¢ Requires skilled developers.

7. JSP (Java Server Pages)
Definition

JSP is a server-side technology used to create
dynamic web pages using Java inside HTML.

Working
e JSP is compiled to a Servlet.

¢ Runs on the server and generates HTML for
the browser.

Advantages

e Easy to write.

¢ Tag libraries support reusable components.
Disadvantages

¢ Not suitable for complex business logic.

8. Servlets
Definition

Servlets are Java classes that handle HTTP requests
and generate responses.

Working
e Container (Tomcat) creates servlet object.
e Executes service(), doGet(), doPost().
Advantages
e Faster and more secure.
o Platform independent.
Disadvantages

e Manual HTML generation is tedious.

9. EJBs (Enterprise Java Beans)
Definition

EJBs are server-side components used to implement
business logic in enterprise-level applications.

Types
e Session Beans
e Entity Beans
e Message-Driven Beans
Advantages
e High security.
e Transaction management is automatic.
e Scalable for enterprise apps.
Disadvantages
e Heavy and complex.

e High learning curve.

Middleware Technologies

Middleware connects distributed systems and
provides communication, transactions, and resource
access.

10. JDBC (Java Database Connectivity)
Definition

JDBC is an API for connecting and executing queries
on a database from Java.

Advantages

o Direct SQL access.

¢ Platform-independent.
Disadvantages

e Requires a lot of coding.

e No object mapping (unlike Hibernate).

11. JNDI (Java Naming and Directory Interface)
Definition

JNDI provides naming and directory services for
locating resources like databases, queues, EJBs etc.

Uses

o Lookups of enterprise resources.
Advantages

+ Simplifies resource access.
Disadvantages

e Complex to configure.

12. JMS (Java Message Service)
Definition

JMS enables asynchronous communication between
distributed components.

Working

e Message Producer - Queue/Topic >
Consumer

Advantages
¢ Loose coupling.
¢ Reliable communication.

Disadvantages

» Requires message server setup.

13. RMI (Remote Method Invocation)
Definition

RMI allows a Java program to invoke methods on an
object running on another JVM.

Uses

e Distributed Java applications.
Advantages

o Easy to use for Java-to-Java communication.
Disadvantages

e Not suitable for cross-language
communication.

14. CORBA (Common Object Request Broker
Architecture)

Definition

CORBA is a language-independent middleware that
allows communication between applications written
in different languages (C, C++, Java, Python etc.).

Advantages

e Platform and language independent.

e Supports complex distributed systems.
Disadvantages

e Very complex architecture.

e Setup cost is high.

Conclusion (English)

Software architecture implementation technologies
provide the necessary tools, frameworks, and
middleware to translate architectural designs into
real, working systems. These technologies ensure
scalability, reliability, communication, and data
management in enterprise applications.

fAsHY (Hindi)

Software architecture ko implement karne ke liye
alag-alag technologies, frameworks aur middleware
use kiye jaate hain. Yeh tools system ko reliable,
scalable aur secure banate hain aur enterprise
applications ko smoothly chalne me madad karte
hain.

Role of UML in Software Architecture
1. Introduction

UML (Unified Modeling Language) is a standard
visual modeling language used to design, document,
and understand the architecture of a software
system.

It provides diagrams that represent structural and
behavioral aspects of the system, helping architects
make better design decisions.

2. Role of UML in Software Architecture
(i) Visual Representation of Architecture

UML provides clear and standardized diagrams
(class, component, deployment diagrams) to visually
represent system architecture.

This helps architects understand the overall structure
quickly.

(ii) Supports Architectural Decision-Making

Architectural design decisions such as layered
architecture, component interactions, module
dependencies, and system boundaries can be
modeled and analyzed using UML.

(iii) Communication Among Stakeholders

UML diagrams act as a common language between
architects, developers, testers, and clients.
Everyone understands the system design clearly,
reducing misunderstandings.

(iv) Documentation of Architecture

UML provides long-term documentation of the
architecture.

This becomes helpful for maintenance, future
development, onboarding new developers, and
audits.

(v) Modeling Structural Aspects

UML structural diagrams such as:

Class Diagram
Component Diagram

Package Diagram
clearly model the static architecture of the
system.

(vi) Modeling Behavioral Aspects

Dynamic behavior is represented using:

Sequence Diagrams
Activity Diagrams

State Machine Diagrams

This helps architects understand workflows,
message flow, user interactions, and runtime
behavior.

(vii) Supports Architectural Styles & Patterns

Architectural styles like layered architecture, client-
server, MVC and patterns such as singleton, adapter,
observer can be represented using UML diagrams.

(viii) Helps in Analysis and Validation

UML models highlight architectural problems such

as:

High coupling
Low cohesion
Missing components

Incorrect data flow
This helps validate architecture before
implementation.

(ix) Helps in System Integration Planning

Component and deployment diagrams show how:

Modules interact

Interfaces communicate

By breaking the system into components, layers,
subsystems, packages, UML helps manage

complexity and improves overall architectural clarity.

3. Advantages of Using UML in Software Architecture

v Standard notation and universally accepted
Consistent modeling across teams.

v Makes architecture understandable and
maintainable

Clear diagrams make systems easy to grasp.

v Supports reuse of patterns and components
Encourages modular design.

v Helps detect design flaws early

Saves time and cost.

v Enhances communication

Everyone speaks the same “design language”.

4. Disadvantages of UML in Architecture

X Can become complex for large systems

Too many diagrams may confuse developers.
X Requires skilled designers

Wrong diagrams may mislead implementation.
X Time-consuming

Detailed modeling increases design time.

X Some diagrams are rarely used in industry

Thus developers may not maintain them later.

5. Conclusion (English)

e Hardware connects UML plays a crucial role in software architecture by

This supports integration planning and providing a standard way to represent, document,

deployment design. validate, and communicate architectural decisions. It

helps architects design systems more clearly and

(x) Reduces Complexity in Large Systems ensures smooth implementation and maintenance.

fssY¥ (Hindi)

Software architecture me UML ek powerful tool hai
jo system ke structure aur behavior ko visually
dikhata hai. UML diagrams se architecture ko
samajhna, design karna, validate karna aur
communicate karna aasaan ho jata hai. Isse
development aur maintenance dono behtar hote
hain.

*** UNIT 4—
1. Definition of Software Architecture

Software Architecture

Software architecture is the fundamental
organization of a software system represented
through its components, their relationships, and the
principles guiding its design and evolution.

In simple terms:

Architecture defines “what the system contains”,
“how modules interact”, and “how the system will
evolve in future.”

2. Evolution of Software Architecture
Phase Description

1. Monolithic Systems All code in one block; low

(1960-80s) modularity.

2. Modular
Programming (1980—

System divided into
modules; improved
90s) maintainability.

. Two-tier & three-tier
3. Client-Server

. models; separation of Ul
Architecture (1990s)

and DB.

4. Component-Based
Architecture (2000s)

Reusable components like
EJB, COM, CORBA.

5. Service-Oriented
Architecture (SOA)

Business services exposed
as independent units.

6. Microservices
Architecture (2010+)

Small, independently
deployable services.

7. Cloud-Native &
Serverless Architecture
(Present)

Scalable, distributed,
event-driven systems.

Advantages: Better scalability, modularity
Disadvantages: Complexity increases over time

3. Software Components and Connectors
Components (WHAT)
e Independent functional units

¢ Examples: Ul module, DB module, Payment
module

¢ Provide: services, data, business logic
Connectors (HOW)
¢ Define interactions between components

o Examples: API calls, message queues, RPC,
REST, events

Uses

e Improves modularity

e Easy maintenance

e Supports parallel development
Issues

¢ Interoperability

e Dependency management

¢ Performance overhead

4. Common Software Architecture Frameworks
1. Zachman Framework

e Enterprise architecture classification

e 6 perspectives (Planner - User - Designer)
2. TOGAF

¢ Provides ADM (Architecture Development
Method)

¢ Used for large organizations

3. 4+1 View Model (Philippe Kruchten)
e Logical view
¢ Development view

e Process view

e Physical view

e Use-case view
Advantages

e Standardization

e Better documentation
Disadvantages

e Complex

e Requires expertise

5. Architecture Business Cycle (ABC)
Architecture is influenced by:

1. Stakeholders

Customers, developers, managers.

2. Requirements

Functional + non-functional (performance, security).

3. Previous Designs / Organizational Goals
4. Development Constraints
Budget, time, tools.
Advantages

e Clear decision-making

o Balanced architecture
Disadvantages

e Conflicts among stakeholders

6. Architectural Patterns (Definitions + Working +
Uses + Advantages/Disadvantages)

(1) Layered Architecture

Definition: System divided into layers (Ul, Business,
Data).

Working: Upper layers call lower layers.

Use: Web apps, enterprise apps.

Advantages: Easy to maintain.

Disadvantages: Performance overhead.

(2) Client—Server Architecture

Definition: Server provides services; client consumes.
Use: Banking, web systems.

Advantages: Centralized control.

Disadvantages: Server bottleneck.

(3) Microservices Architecture

Definition: App is divided into small independent
services.

Use: Netflix, Amazon.

Advantages: Scalability.

Disadvantages: Complex deployment.

(4) Event-Driven Architecture

Definition: Components communicate via events.
Use: Real-time apps.

Advantages: Highly responsive.

Disadvantages: Hard debugging.

(5) MVC (Model-View—-Controller)

Definition: Separates data, Ul, and logic.
Use: Web frameworks like Angular, Django.
Advantages: Parallel development.
Disadvantages: Complex for small apps.

7. Software Architecture Models

(Definition + Uses + Issues)

1. Structural Models

Describe organization of components and their
relationships.

Use: System overview

Issue: No runtime behavior shown.

2. Framework Models

Represent reusable architecture frameworks.
Use: Faster development
Issue: Limited flexibility.

3. Dynamic Models

Show system behavior over time (state change).
Use: Real-time apps
Issue: Hard to design.

4. Process Models

Represent processes, threads, communication.
Use: Concurrent systems
Issue: Synchronization issues.

8. Architecture Styles (With Key Points + Working)

1. Dataflow Architecture

Data moves through transformation steps.
Example: Compiler.

2. Pipes and Filters

Each filter performs a function; pipe carries data.
Use: Data processing apps.

3. Call and Return

Typical function-call based systems.
Use: Traditional program design.

4. Data-Centered Architecture

Central DB controlling all modules.
Use: ERP/Banking.

5. Layered Architecture
Already explained.
6. Agent-Based Architecture

Autonomous intelligent agents perform tasks.
Use: Al systems.

7. Microservices Architecture
Already explained.

8. Reactive Architecture

Event-driven, responsive, resilient.
Use: High-performance apps.

9. REST Architecture

Resource-based operations using HTTP.
Use: Web APIs.

9. Software Architecture Implementation
Technologies

ADLs (Architecture Description Languages)
¢ Used to describe components, connectors
¢ Examples: ACME, Wright
Struts (Java Framework)
e MVC-based
o For enterprise applications
Hibernate

e ORM framework (maps Java objects to DB
tables)

Node.js
¢ Server-side JavaScript
o Event-driven
AngularJS
e Front-end JS framework
e MVC-based
J2EE (JSP, Servlets, EJB)
e JSP - View
o Servlets - Controller

o EJB -> Business logic

10. Middleware Technologies
JDBC
o Database connectivity
JNDI
e Naming and directory service

JIMS

e Messaging services
RMI

e Remote method invocation
CORBA

e Language-independent distributed
communication

11. Role of UML in Software Architecture
Key Points

e UML gives visual representation

e Helps in communication

e Used to design structure + behavior
Important UML Diagrams

e Class diagram

e Use-case diagram

e Component diagram

e Deployment diagram

e Sequence diagram

Advantages: Easy understanding of architecture
Disadvantages: Time-consuming to model everything

12. Architecture Analysis & Design
Requirements for Architecture
e Functional

¢ Non-functional (performance, security,
usability)

e Constraints
Analysis Methods

e ATAM (Architecture Tradeoff Analysis
Method)

e SAAM (Software Architecture Analysis
Method)

Life-Cycle View

¢ Requirements - Design - Implementation
-> Testing = Maintenance - Evolution

13. Advantages and Disadvantages of Software
Architecture

Advantages

¢ Improves quality attributes

¢ Better maintainability

¢ Scalability

¢ Reusability

¢ Reduces cost and development effort
Disadvantages

e Requires expertise

e Time-consuming

¢ Initial high cost

e Wrong decisions cause system failure

Conclusion (English)

Software architecture is the backbone of any
software system. It defines the structure, interaction,
and evolution of software components. A good
architecture ensures scalability, performance, and
maintainability throughout the software life cycle.
Proper architectural decisions made at the early
stages determine the long-term success and quality
of the system.

fsHY (Hindi)

Software architecture fF®Y 8t software system #
$ig @Y &1 TE system FY TITSAT, components &
gy 3T ARSI Y growth F dT FIAT &1 3PR
Ql'&'iﬂ?l’ # architecture Wgr ?:I:?-lT 1T, ar g
system d<T, '{l)TfE"IFI’, scalable 31X maintainable S1dT
el

1. Cost Benefit Analysis Method (CBAM)

Definition

CBAM (Cost Benefit Analysis Method) is an
architecture evaluation method that calculates the
economic value of different architectural decisions
by analyzing their cost, benefits, and risks.

IE method architecture & options (strategies) &l
NAF AT MAFTaar § a1fF TR/ cost-effective
e a1 I FH|

Key Concepts

e Architectural Strategies: Different design
choices (e.g., caching, load balancing).

e Utility: How much benefit a system gains
from a strategy.

e Cost: Money, time, resources required to
implement a strategy.

e Risk: Chance of failure or difficulty in
implementing the strategy.

e ROI: Return on investment for each
architectural choice.

Working Steps (CBAM Process)
Step 1: Identify Business Goals

e Performance, security, scalability, availability.
Step 2: Identify Architectural Strategies

Examples:
Caching, replication, compression, microservices,
new hardware.

Step 3: Assess Costs
e Development cost
e Maintenance cost
o Additional hardware cost
e Training cost
Step 4: Assess Benefits
e Performance improvement

e Response time reduction

¢ Reliability improvement
Step 5: Assign Utility Scores
Each strategy gets a utility value (0-100).
Step 6: Assess Risks
e Technical risk
¢ Costoverrun
¢ Integration difficulty
Step 7: Compute ROI
ROI = (Benefit — Cost) / Cost
Step 8: Select Best Strategy

Highest ROI + lowest risk = best architectural option.

Advantages

e Provides economic justification for
architectural decisions

« Balances cost, benefits, and risk

e Helps in long-term budget and planning

¢ Improves decision-making and transparency
Disadvantages

e Requires accurate cost estimation

¢ Time-consuming

o Complex when many strategies exist

¢ Depends heavily on expert judgment

2. Architecture Tradeoff Analysis Method (ATAM)
Definition

ATAM (Architecture Tradeoff Analysis Method) is a
method used to evaluate architectural decisions by
identifying their impact on quality attributes and
analyzing trade-offs among them.

ATAM quality attributes I performance, security,
modifiability, availability YX architecture T YHTd

adrdr & 3R trade-offs &Y identify Il gl

Key Concepts

e Quality Attribute Goals: Performance,
security, availability.

e Trade-offs: Improvement in one attribute may

degrade another.

Example: Increasing performance may reduce

security.

e Sensitivity Points: Parameters where small
change causes big impact.

e Risk Themes: Pattern of risks involved.

Working Steps (ATAM Process)
1. Present the ATAM
ATAM team explains goals and process.
2. Present Business Drivers
Stakeholders define:

e Main goals

o Constraints

o Priorities
3. Present Architecture
Architect explains:

e System design

e Major components

o Patterns used
4. Identify Architectural Approaches
List all major design techniques used.
5. Generate Quality Attribute Utility Tree

Quality attributes - scenarios

Example:

“System should respond within 2 seconds under
10,000 users.”

6. Analyze Architectural Approaches

Evaluate how architecture supports each scenario.

7. Identify Sensitivity Points

Where small change affects performance heavily.

8. Identify Trade-offs

Performance vs security vs cost.

9. Identify Risks

Integration issues, scalability challenges, etc.
10. Present Results

Risks list

Trade-off summary

Architecture improvement suggestions

Advantages

Evaluates quality attributes deeply

Identifies risks early

Helps stakeholders understand trade-offs
o Improves overall architecture quality
Disadvantages
e Time-consuming
¢ Requires expert architects
¢ Can be expensive for small projects

o Complexity increases with system size

3. CBAM vs ATAM (Difference Table)

Feature CBAM ATAM

Cost-benefit Quality attribute
Focus . .

evaluation evaluation

Economic Identify trade-offs &
Goal

decision-making risks

. Architecture &
Input Cost, benefits, ROI .
scenarios

Output ROI ranking Risk list, trade-offs

. Architecture quality
Use Budget planning
improvement

4. Conclusion (English)

CBAM focuses on the economic evaluation of
architectural decisions, while ATAM focuses on
quality attribute trade-offs. Together, they ensure
both cost-effectiveness and high-quality architecture
design.

4. AsHY (Hindi)

CBAM architecture & ATIH-gTfer IR IR
gAFHY T e g #§ Agg Far §, FafH
ATAM architecture & quality attributes 3R trade-
offs T W CaGI %’I 2T methods AT
Th Holqd 3R cost-effective architecture AR
A # IR §

1. Active Reviews for Intermediate Design (ARID)
Definition

ARID (Active Reviews for Intermediate Design) is an
architecture evaluation technique used to review
partially-complete or intermediate-level design
before the final architecture is completed.

It helps stakeholders identify design problems early
using review scenarios and active participation.

Simple Meaning:
ARID T&F review method & ST design & €I arer

(intermediate) TXOT & & 3TF issues AR risks HY
9F3 AT ¢l

Purpose / Why ARID is Used?

e To evaluate incomplete or draft architectural
design

e To detect risks early
e To get feedback from stakeholders
e To ensure design is aligned with requirements

e To check feasibility before full
implementation

Key Concepts

Scenarios: Use-cases or situations used for
design evaluation

Reviewers: Stakeholders, architects,
developers

Stimulus-Response: Inputs given to the design
to test behavior

Intermediate Design: Not final, still under
development

Working Steps (ARID Process)

Step 1: Preparation

Identify review team
Collect requirements
Define review goals

Select scenarios for testing

Step 2: Overview Presentation

Architect presents:

Design overview
Major components

Design rationale

Step 3: Scenario Generation

Stakeholders create real-world usage scenarios:

Performance scenarios
Security scenarios

Reliability scenarios

Step 4: Active Evaluation

Reviewers walk through each scenario against the

intermediate design:

Check feasibility
Identify issues

Detect design gaps

Step 5: Group Discussion

Reviewers debate flaws

Suggest improvements

Step 6: Documentation
e List of issues
e List of risks

e Recommendations for improvement

Advantages

e Evaluates design early

Reduces redesign cost

Involves stakeholders actively

e Improves quality of design

Identifies missing requirements
Disadvantages

e Time-consuming

e Requires expert reviewers

e Depends on quality of scenarios

¢ Not suitable for very small projects

2. Attribute Driven Design Method (ADD)
Definition

ADD (Attribute Driven Design) is a software

architecture design method in which the architecture
is created based on quality attribute requirements
(performance, modifiability, security, usability, etc.).
The design grows from high-level components to
detailed components using quality-attribute-driven

decisions.

Simple Meaning:

ADD T& top-down design method % Elﬁ

architecture quality attributes & 3THR 9T 4R

e STar B

Purpose / Why ADD is Used?

o To design architecture systematically

o To satisfy quality attributes (performance,

modifiability)

¢ To make design structured and repeatable
o To support complex, large systems

¢ To reduce architectural ambiguity

Key Concepts
¢ Quality Attribute Scenarios
¢ Design Decisions

o Decomposition (breaking system into
modules)

e Tactics (techniques used to achieve quality
attributes)

¢ Refinement (stepwise detailing of
components)

Working Steps (ADD Process)
Step 1: Gather Requirements
Functional + quality attribute requirements.
Step 2: Identify Architectural Drivers
e Quality attributes
¢ Constraints
e Business goals
Step 3: Choose Architectural Patterns / Tactics

Examples:

Layers

Client-server

Caching

Load balancing

Encryption
Step 4: Initialize High-Level Design
Create the first-level decomposition:
¢ Major subsystems
e Modules

¢ Connectors

Step 5: Decompose Each Component
Break large components into smaller modules.
Step 6: Analyze Against Scenarios
Check if design satisfies:
e Performance
e Security
e Scalability
Step 7: Iterate and Refine

Repeat decomposition until the design is complete.

Advantages

¢ Architecture aligns with quality requirements

Systematic and structured design

Helps in complex systems

Reusable design strategies

Supports top-down refinement
Disadvantages
¢ Time-consuming
e Requires detailed requirement knowledge
e Needs expert architects

e High cost for small projects

3. Difference Between ARID and ADD

Feature ARID ADD

Evaluate Create architecture
Purpose . . .

intermediate design based on attributes
Stage . . e .

Mid-design stage Initial design stage
Used

Detect issues & Satisfy quality
Focus . .

risks attributes

List of issuesand Complete
Outcome

improvements architectural design

Nature Review method Design method

Conclusion (English)

ARID focuses on reviewing an intermediate design
through scenarios to identify risks early, while ADD
focuses on designing an architecture that prioritizes
quality attributes. Together, they support systematic
design and evaluation of robust software
architectures.

fsHY¥ (Hindi)

ARID FT 3827 design T HAAT F & 7
ERIGGH %,Sﬁﬁ? ADD architecture &Y quality
attributes & 3MYR WX AR HL 1 9fFar &
&l methods fA®®HT software architecture FY
#orga 3R FR-FFT T

I ARCHITECTURE REUSE & DOMAIN-SPECIFIC
SOFTWARE ARCHITECTURE — COMPLETE NOTES

1. Architecture Reuse
Definition

Architecture Reuse is the practice of using previously
designed and validated architectural components,
patterns, frameworks, or complete architectures in
new software systems to save time, cost, and effort.

Simple Meaning:
Purane, tested architecture ko dobara use karna taa
ki naya system jaldi aur sahi quality ka ban sake.

Key Concepts

¢ Reusable Components: Modules, services,
APlIs

¢ Reusable Patterns: MVC, layered architecture,
client-server

e Reusable Frameworks: Angular, Spring,
Django

¢ Reuse Levels: Code reuse, component reuse,
architecture reuse

Types of Reuse
1. Component Reuse

Ready-made components (authentication module,
payment module) reused in new projects.

2. Architectural Pattern Reuse

Existing patterns like MVC, microservices reused
directly.

3. Framework Reuse

Reuse of existing frameworks that provide structure
+ libraries.

4. Complete System Reuse

Reuse entire architecture (e.g., ERP system reused
for different companies).

Why Architecture Reuse is Needed?
e Reduces development time
e Reduces cost
e Improves system quality
e Helps in faster delivery

e Reduces design errors

Advantages
e Saves time and effort
¢ Reduces development cost
e Ensures high reliability (already tested)
e Promotes standardization
¢ Increases productivity
Disadvantages

¢ Reused architecture may not fit every
requirement

e Less flexibility
e Integration issues

o Dependent on old system constraints

¢ Hard to customize heavily

2. Domain-Specific Software Architecture (DSSA)
Definition

Domain-Specific Software Architecture (DSSA) is an
architecture specially designed for a particular

domain such as banking, healthcare, telecom, e-
commerce, aviation, etc.

Simple Meaning:

Ek specific industry/field ke liye banaya gaya
architecture jisme us domain ki sari needs already
covered hoti hain.

Key Concepts

¢ Domain: Specific area like banking, medical,
education, transport

¢ Domain Knowledge: Expert understanding of
that field

e Reusable Domain Components: Banking: loan
module, KYC module

o Domain Patterns: e.g., Healthcare - patient
record pattern

Why DSSA is Designed?

To solve problems of one particular domain
efficiently using:

e Reusable solutions
e Domain patterns

¢ Standard workflows

Features of DSSA

1. Domain Specificity
Architecture is tailored to only one domain.

2. Reuse of Domain Knowledge
Reusing solutions that worked earlier in the
same domain.

3. Standardization
Ensures common structure across multiple
similar applications.

4. Higher Productivity
Because many components already exist.

Process / Working Stages of DSSA

1. Domain Analysis
o Identify domain requirements
e Collect common features

e Identify constraints
(Example: Banking - accounts, loans, KYC,
security)

2. Domain Design
e Create general architecture for that domain
¢ Define domain components

e Select suitable architectural style
(microservices, layered, etc.)

3. Domain Implementation
e Develop reusable modules
o Create templates, patterns, code generators
¢ Implement domain services

4. Domain Reuse

e Reuse architecture, patterns, and modules in
new applications

Examples of DSSA

e Banking DSSA: Account system, loan
management, KYC

e Healthcare DSSA: Patient records,
prescriptions, insurance

e E-commerce DSSA: Product catalog, payment
gateway, cart

e Telecom DSSA: Billing, recharge, usage
tracking

Advantages
o Better performance for specific domain
o High reliability (domain tested)
o Faster development and deployment
o High reusability
¢ Reduced development cost
¢ Better quality and consistency
Disadvantages
e Limited to one domain
¢ Hard to apply to general systems
e Requires domain experts
¢ High initial cost

e Updating DSSA for new trends is difficult

Difference Between Architecture Reuse vs DSSA

Architecture
Feature DSSA
Reuse

Reuse of existing Architecture for a

Focus) .]
architecture specific domain
Scope General-purpose Domain-specific
Solve domain
Need Reduce time/cost problems
efficiently
. Reusable across Reusable only in
Reusability . .
multiple systems the same domain
. General Domain
Expertise]
architecture knowledge
Needed .
knowledge required

Conclusion (English)

Architecture reuse helps reduce development time
and cost by using existing architectural elements,
while DSSA provides specialized architectures
tailored for a particular domain. DSSA ensures high
efficiency within a domain, and reuse ensures
productivity across multiple systems.

frsH¥ (Hindi)

Architecture reuse ¥ ngﬁ' 3 tested architecture
H QERT SEIATT I TAT 3 ANIT TA1$
ST &1 @ DSSA fFHY v A &7 (domain)
& faT @AY architecture AR &ar § @ 39
& & gHE It sl 3R o F ay
ger & ureh

UNIT5-

Software Architecture Documentation — Complete
Notes (Print-Ready)

1. Definition

Software Architecture Documentation is a formal
description of a software system’s structure,
components, connectors, interfaces, constraints, and
architectural decisions. It serves as a blueprint of the
system, enabling stakeholders to understand the
system design and its evolution.

Key Concept:

e Acts as a communication tool between
developers, testers, managers, and clients.

e Preserves architectural decisions for future
reference.

e Supports design, implementation,
maintenance, and evolution of the system.

2. Principles of Sound Documentation
Key Concepts

1. Completeness — All components, connectors,
interfaces, and decisions are documented.

2. Correctness — Reflects the system’s intended
structure, behavior, and constraints.

3. Consistency — Uniform notation, naming, and
alignment across views.

Clarity — Simple language, diagrams, and
tables for easy understanding.

Multiple Views — Structural, behavioral,
deployment, and development views for
different stakeholders.

Design Rationale — Reasons behind every
architectural decision are recorded.

Maintainability — Documentation can be
updated easily as the system evolves.

Working

Begins at the high-level architecture stage.

Documents all modules, components,
interfaces, and interactions.

Maintains separate views (structural,
behavioral, deployment, development).

Continuously updated as design evolves.

Advantages

Clear understanding of the system.

Better communication among stakeholders.
Supports decision-making and trade-offs.
Improves maintainability and reduces errors.
Facilitates reuse in future projects.

Helps in project planning and resource
allocation.

Disadvantages

Time-consuming to create and maintain.

Requires skilled architects; poor
documentation may mislead.

Needs frequent updates as the system
evolves.

Over-documentation may confuse
developers.

Complex diagrams may be hard for non-
technical stakeholders.

Can slow down agile or fast-paced
development.

3. Refinement

Definition

Refinement is the process of converting high-level
architecture into detailed, implementable design.

Key Concepts

o Bridges abstract design to concrete
implementation.

o Defines sub-components, responsibilities,
interfaces, and interactions.

Working
1. Identify high-level components.
2. Break into sub-components/modules.

3. Define interactions/connectors.

Working

Draw system as a central box.

Identify external entities and their
interactions.

Show data or control flows connecting
entities and the system.

Advantages

Provides quick overview of system scope.
Clarifies system boundaries.

Helps in requirement validation.

Disadvantages

Cannot show internal structure.

Limited use for detailed design or complex

4. Specify interfaces, inputs, outputs, and interactions.
constraints.
5. lterate until each module is ready for o
. . 5. Variability
implementation.
Definition

Advantages

Variability is the ability of an architecture to adapt to
different configurations or changes without major
redesign.

e Reduces ambiguity.

e Makes development, testing, and

maintenance easier.
Key Concepts

Disadvantages . .
e Supports multiple product variants.

e Time-consuming for large systems. . .
+ Allows modification, addition, or removal of

e Requires detailed analysis and skilled features.
architects.
e Ensures flexibility and scalability.
Working

4. Context Diagrams
g e Functional Variability: Optional/configurable

Definition features.

A context diagram is a high-level visual e Structural Variability: Replaceable or
representation of the system as a black box and its alternative components.

interactions with external entities. . L .
¢ Behavioral Variability: Runtime workflow

Key Concepts changes.

e Defines system boundaries. ¢ Deployment Variability: Adaptation to

. . different environments (cloud, on-premise).
o Identifies external entities (users, systems,

devices). Advantages

e Shows inputs, outputs, and data flows. ¢ Increases flexibility.

e Reduces cost and effort for multiple product
variants.

Disadvantages
e Complexity in managing variations.

e Requires careful planning and design
patterns.

6. Software Interfaces
Definition

Software interfaces define how components
communicate with each other or with external
systems.

Key Concepts
e Programmatic Interfaces (APIs)
e User Interfaces (Ul)
e Hardware Interfaces
e Network Interfaces

o Data Interfaces

Working

o Each interface specifies operations/methods.

e Defines input/output data, protocols,
constraints, and security.

e Enables integration and independent
development.

Advantages

e Ensures modularity and independent
development.

e Facilitates integration and testing.
e Prevents errors due to miscommunication.
Disadvantages

e Incorrect interface design can cause system
failures.

e Complex interfaces may be hard to
understand or maintain.

Summary:
Software Architecture Documentation ensures a
system is well-planned, understandable,
maintainable, and adaptable. By following principles
of sound documentation, applying refinement, using
context diagrams, managing variability, and clearly
defining interfaces, teams can develop high-quality
software efficiently.

Software Architecture Concepts

1. Refinement
Definition:

Refinement is the process of transforming a high-
level, abstract architecture into a detailed,
implementable design.

Key Concepts:

o Bridges the gap between high-level design
and implementation.

o Defines sub-components, modules,
responsibilities, and interactions.

o Ensures that all architectural decisions are
actionable.

Working:
1. Identify high-level components.

2. Decompose components into sub-
components/modules.

3. Define connectors and interactions.

4. Specify interfaces, inputs/outputs, and
constraints.

5. Iterate until each module is ready for coding.
Advantages:

¢ Reduces ambiguity for developers.

o Simplifies implementation and testing.

¢ Ensures consistency between design and
code.

Disadvantages:

e Can be time-consuming for large systems.

e Regquires skilled architects for proper
decomposition.

2. Context Diagrams
Definition:

A context diagram is a high-level visual
representation of a system showing its interactions
with external entities while treating the system as a
black box.

Key Concepts:
e Shows system boundaries.

o Highlights external entities (users, other
systems, devices).

e Shows data flows (input/output) between the
system and its environment.

Working:
e Draw the system as a central box.

o Add all external entities interacting with the
system.

e Connect entities with arrows showing data or
control flows.

Advantages:
e Provides a clear overview of system scope.

e Helps stakeholders quickly understand
interactions.

e Useful for requirement validation.
Disadvantages:
e Cannot show internal structure of the system.

¢ Limited for detailed architectural or
behavioral analysis.

3. Variability

Definition:

Variability is the ability of an architecture to adapt to
different configurations or changes without major
redesign.

Key Concepts:
e Supports multiple product variants.

o Enables easy addition, removal, or
modification of features.

o Ensures flexibility and scalability of the
system.

Working:

e Functional Variability: Optional/configurable
features.

e Structural Variability: Replaceable or
alternative components.

o Behavioral Variability: Changes in workflow
or runtime behavior.

o Deployment Variability: Ability to deploy in
different environments (cloud, on-premise,
hybrid).

Advantages:

o Provides flexibility to adapt to changing
requirements.

e Reduces cost and effort when building similar
variants.

Disadvantages:
¢ Managing variability increases complexity.

e Requires careful design and planning.

4. Software Interfaces
Definition:

Software interfaces define how system components
communicate with each other or with external
systems.

Key Concepts:

¢ Programmatic Interfaces (APIs): Functions or
methods exposed for component interaction.

User Interfaces (Ul): Screens, forms,
dashboards for end-users.

Hardware Interfaces: Communication with
devices or sensors.

Network Interfaces: Protocols, endpoints, and

sockets for communication.

Data Interfaces: Schemas, message formats,
and exchange rules.

Working:

Each interface defines operations/methods.

Specifies inputs, outputs, constraints, and
protocols.

Enables independent module development
and integration.

Ensures consistent communication between
components.

Advantages:

Supports modular and independent
development.

Facilitates integration and testing.

Prevents errors caused by miscommunication.

Disadvantages:

Poorly defined interfaces can cause system
failures.

Complex interfaces may be hard to
understand and maintain.

Summary:

Refinement turns high-level design into
implementable modules.

Context Diagrams visually show system
boundaries and interactions.

Variability allows architecture to adapt to
changes and multiple variants.

Software Interfaces define communication
rules between components and systems.

All four are essential parts of software architecture
documentation to ensure clarity, maintainability,
scalability, and ease of development.

Documenting the Behavior of Software Elements
and Systems

1. Definition

Documenting the behavior of software elements and
systems refers to the process of formally recording
how components, modules, and the overall system
operate under different scenarios. This includes their
interactions, state changes, responses to inputs, and
expected outputs.

Key Concept:

¢ Focuses on dynamic aspects of software,
unlike structural documentation which
emphasizes static components.

o Ensures developers, testers, and stakeholders
understand how the system behaves at
runtime.

2. Key Concepts
1. Behavioral Documentation:

o Captures the operations, workflows,
and interactions between system
elements.

o Helps model scenarios, use cases, and
system reactions.

2. Dynamic Modeling:

o Uses diagrams such as sequence
diagrams, state charts, activity
diagrams, and collaboration diagrams
to show system behavior.

w

Interaction Modeling:

o Documents how different components
or modules communicate.

o Includes message passing, function
calls, event handling, and data flow.

4. Event-Driven Behavior:

o Captures system responses to internal

and external events.
4. Advantages

o Important for real-time and reactive . . .
e Provides clear understanding of dynamic

systems.
¥ system behavior.

5. State Modeling:
g e Assists in testing and validation of functional

o Represents states of objects or system requirements.
components and transitions based on

. o Facilitates integration and system-level
events or conditions.

debugging.
o Helps stakeholders visualize complex
3. Working / How to Document Behavior interactions.
1. Identify Key Software Elements: e Supports requirement traceability and

. compliance verification.
o Determine the modules, components,

or objects whose behavior needs

documentation.]
5. Disadvantages

2. Use Behavioral Diagrams:)))
¢ Can be time-consuming, especially for large

o Sequence Diagrams: Show how systems.

messages flow over time between
& ¢ Complex diagrams may be difficult for non-

objects.
) technical stakeholders to understand.

State Diagrams: Represent object or
° & P J ¢ Regquires skilled architects or designers to

system state changes.
document accurately.

o Activity Diagrams: Show workflows .
¢ Needs continuous updates as system evolves,

and activities.
otherwise becomes outdated.

Collaboration Diagrams: Highlight
° & gnlie ¢ Over-documentation may lead to information

interaction among components.
overload.

3. Describe Input and Output:

o Document how each element
. . 6. Summary
responds to inputs or triggers.

. . . e Behavioral documentation focuses on
o Specify outputs, including errors or]
. dynamic aspects of software elements and
exceptions.
systems.

4. Define Event Handling:
& o It uses diagrams and textual descriptions to

o Capture how events affect capture interactions, state changes, and
components or the system. responses to events.

o Include synchronous/asynchronous o Essential for understanding, testing,
operations. integrating, and maintaining complex

software systems.
5. Iterate and Refine: ¥

. . *** Software Architecture Documentation Package -
o Review documentation for
Seven-Part Template

completeness and correctness.

o Update as system design evolves.

1. Definition

A documentation package is a structured collection
of documents that describes a software system’s

architecture. Using a seven-part template ensures
that all essential aspects of the architecture are

captured systematically.

Key Concept:

Provides a comprehensive, standardized view
of the system architecture.

Supports development, testing, maintenance,
and future evolution.

Helps stakeholders understand both
structural and behavioral aspects of the
system.

2. Purpose

Ensure clarity and consistency across all
architectural documents.

Facilitate communication among developers,
testers, and stakeholders.

Enable reuse, maintenance, and scalability.

Support decision-making and trade-off
analysis during development.

3. Seven-Part Template

The seven-part template is widely recommended
(e.g., IEEE 1471 / ISO/IEC 42010 standard). Each part
captures a specific aspect of the architecture.

Part 1:

Introduction

Purpose: Explain the goals, scope, and

objectives of the architecture documentation.

Content:
o Overview of the system.
o Stakeholders and their concerns.
o System objectives and constraints.

Key Concept: Sets the context for the entire
documentation package.

Part 2: Architectural Representation

Part 3:

Part 4:

Purpose: Present the architecture using
diagrams and textual descriptions.

Content:
o High-level structural diagrams.

o Component relationships and
connectors.

o Views such as structural, behavioral,
deployment, and development.

Key Concept: Offers a visual and textual
blueprint of the system.

Architectural Views and Viewpoints

Purpose: Show different perspectives tailored
for various stakeholders.

Content:

o Viewpoints: Define conventions,
notations, and concerns for each view.

o Views: Structural view, behavioral
view, deployment view, development

view.

Key Concept: Enables stakeholders to focus
on relevant concerns without being
overwhelmed by unnecessary details.

Architecture Rationale

Purpose: Explain the reasoning behind design
and technology choices.

Content:

o Decisions on patterns, frameworks,
and technologies.

o Trade-offs and alternatives
considered.

o Constraints that influenced decisions.

Key Concept: Preserves decision-making
history for future reference and maintenance.

Part 5: Architectural Interfaces

e Purpose: Document interactions between
components and with external systems.

e Content:
o APIs, data formats, protocols.

o Event handling and communication
mechanisms.

o Security and access control rules.

¢ Key Concept: Ensures components
communicate correctly and can be developed
independently.

Part 6: Quality Attributes and Scenarios

e Purpose: Capture non-functional
requirements that the system must satisfy.

e Content:

o Performance, reliability, scalability,
maintainability, security.

o Scenarios illustrating how the system
behaves under different conditions.

e Key Concept: Helps analyze trade-offs and
validate architecture against stakeholder
concerns.

Part 7: Appendices and References

e Purpose: Include supplementary information
that supports understanding.

e Content:
o Glossary of terms.

o External references, standards, and
frameworks used.

o Detailed diagrams, tables, or
additional notes.

o Key Concept: Provides supporting material
without cluttering the main document.

4. Advantages of Seven-Part Documentation Package

e Comprehensive coverage of system
architecture.

¢ Provides a structured, standardized approach.

e Enhances communication and understanding
among stakeholders.

o Preserves design rationale and decisions for
future reference.

e Supports quality analysis, maintenance, and
system evolution.

5. Disadvantages
¢ Time-consuming to prepare and maintain.

¢ Requires skilled architects to create accurate
and meaningful documentation.

¢ May become outdated if not regularly
updated.

¢ Complexity may overwhelm small teams or
non-technical stakeholders.

6. Summary

A seven-part architecture documentation package
ensures that all key aspects of software
architecture—structure, behavior, interfaces, quality
attributes, rationale, and supporting information—
are captured systematically. It provides a complete,
stakeholder-focused, and maintainable blueprint for
the software system.

